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Abstract – Image captioning is a process of automatically 

describing an image with one or more natural language 

sentences. In recent years, image captioning has witnessed 

rapid progress, from initial template-based models to the 

current ones, based on deep neural networks. This paper gives 

an overview of issues and recent image captioning research, 

with a particular emphasis on models that use the deep 

encoder-decoder architecture. We discuss the advantages and 

disadvantages of different approaches, along with reviewing 

some of the most commonly used evaluation metrics and 

datasets. 
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I.     INTRODUCTION 

Recent advances in deep learning methods on percep-
tual tasks, such as image classification and object detection 
[1, 2] have encouraged researchers to tackle even more dif-
ficult problems for which recognition is just a step towards 
to more complex reasoning about our visual world [3]. Im-
age captioning is one of such tasks. 

The aim of image captioning is to automatically de-
scribe an image with one or more natural language sen-
tences. This is a problem that integrates computer vision 
and natural language processing, so its main challenges 
arise from the need of translating between two distinct, but 
usually paired, modalities [4].  First, it is necessary to detect 
objects on the scene and determine the relationships be-
tween them [5] and then, express the image content cor-
rectly with properly formed sentences. The generated de-
scription is still much different from the way people de-
scribe images because people rely on common sense and 
experience, point out important details and ignore objects 
and relationships that they imply [6]. Moreover, they often 
use imagination to make descriptions vivid and interesting. 

Regardless of the existing limitations, image 
captioning has already been proven to have useful 
applications, such as helping visually impaired people in 
performing daily tasks. Automatically generated 
descriptions can also be used for content-based retrieval 
[7] or in social media communications. 

Early image captioning approaches relied on the use of 
predefined templates, which were filled in based on the re-
sults of the detection of elements on the scene [8, 9]. How-
ever, the advantage of such bottom-up approaches in terms 
of the ability to capture details was not enough to keep them 
in the focus of research interest. Generated sentences were 
too simple, lacking the fluency of human writing. Moreo-
ver, such systems were heavily hand-designed, which con-

strained their flexibility.  Some authors [10] have reformu-
lated image captioning as a ranking task. Ranking-based 
approaches always return well-formed sentences, but they 
cannot generate new sentences or to describe composition-
ally new images [11], i.e., those containing objects that 
were observed during training but appear in different com-
binations on the test image. In contrast, today’s state-of-the-
art models are generative and neural networks based. They 
usually employ an encoder-decoder architecture by com-
bining a Convolutional Neural Network (CNN) with a Re-
current Neural Network (RNN). 

The rest of the paper is organized as follows: The next 
Section provides some background information on the typ-
ical architecture of image captioning systems. Section III. 
groups image captioning models according to the caption-
ing task and describes relevant models for each type. Sec-
tion IV. presents some of the most commonly used data 
sets, along with a description of how they were collected. 
Section V. lists the metrics and points to the problems that 
arise when evaluating generative approaches. The paper 
ends with a Conclusion. 

II.     ARCHITECTURE AND LEARNING APPROACHES 

A.   Encoder-Decoder Framework 

Inspired by its success in Neural Machine Translation 
[12], many of the current state-of-the-art models for image 
captioning employ the encoder-decoder architecture (Fig. 
1). In this architecture, the encoder is used to map the input 
into its real-valued fixed-dimensional vector representa-
tion. A decoder then generates output, conditioned on the 
representation produced by the encoder. The main ad-
vantage of such a system is that it can be trained end-to-
end, meaning that the parameters of the whole network are 
learned together, thereby avoiding the problem of aligning 
several independent components. 

Image captioning is often understood as a task of trans-
lating one modality, i.e. an image, into another modality, 
i.e. its description, so the encoder-decoder architecture has 
been successfully applied with a convolutional neural net-
work (CNN) [13] on the encoder side, and a recurrent neu-
ral network (RNN) [14] on the decoder side. 

A CNN acts as a feature extractor that is usually pre-
trained on a large dataset for a classification task [15]. A 
feature map from a convolutional layer or the vector repre-
sentation from a fully-connected layer is then used as image 
representation. An RNN or one of its variants, such as the 
long short-term memory (LSTM) network [16], is em-
ployed for language modeling. 



 

 

 
Figure 1. Encoder-decoder framework for image captioning: first a CNN encoder produces image representation (left), then an LSTM decoder gen-

erates caption conditioned on the representation produced by the encoder (right) 

 B.   Learning 

Majority of the encoder-decoder image captioning 
models use Maximum Likelihood Estimation (MLE) as 
their learning method.  In the supervised learning setting, 
with training examples consisting of image-caption pairs, 
the model maximizes the probability of the correct caption 
given the image [17]:    

 (1) 

where I is the image,   is the corre-
sponding caption of length N,  are the parameters of the 
model. The joint probability over words can be expressed 
as follows: 

 (2) 

where the dependency on is dropped for simplifica-
tion. 

To model  usually an LSTM is 
employed, which is trained to predict the next word 
conditioned on all the previously predicted words  

 and the context vector c produced by the 
encoder [18, 32]: 

 (3) 

where is a nonlinear function that outputs the 
probability of   is the hidden state of the LSTM at time 
step . 

Novel sentences can be generated by randomly 
sampling from the model's distribution or by using beam 
search [19, 17]. 

Although effective, some limitations of MLE learning 
have motivated the adoption of alternative learning meth-
ods. Reinforcement learning [20] can be used to address the 
exposure bias problem [21] and for the direct optimization 
of the standard evaluation metrics [22]. For increasing the 
diversity of generated captions, conditional GAN frame-
work [23] or contrastive learning [24] were proposed. 

C.   Attention Mechanism 

It was demonstrated in [18] that the fixed-length vector 
representation produced by the encoder is responsible for 
the degradation of the performance that occurs as the length 
of input increases. Regardless of the size of the input, in the 
basic encoder-decoder all the information is compressed 

into a context vector of a predefined size. Instead, the au-
thors proposed to encode the input into a set of vectors. 

The first work to employ an attention mechanism on 
the task of image captioning was [25]. In the proposed 
model, image features are extracted from a lower 
convolutional layer of a CNN as a set of L annotation 

vectors summarizing a pre-defined 
spatial location of the image.  To each annotation vector, a 
positive weight   is assigned, indicating the amount of 
attention each image feature receives. The attention weight  

 is computed by an attention model : 

 (4) 

,  (5) 

where  is the previous hidden state. 

After obtaining the attention weights, the attention 
mechanism computes the context vector   as a dynamic 
representation of the relevant parts of the image at a given 
time step: 

 (6) 

The context vector is then used to update the hidden 
state of the decoder. 

III.     IMAGE CAPTIONING TYPES 

We have grouped methods and models of image cap-
tioning given the task into three types: (1) standard image 
captioning, (2) image captioning with style and (3) cross-
lingual and multilingual image captioning. 

A.   Standard Image Captioning 

For the correct description of the image, it is necessary 
to: 

(1)  detect the content of the image in terms of objects, 
attributes, relationships, with the conclusion of what is new 
or interesting [26, 27], 

(2)  express the represented semantic content with 
properly formulated sentences [17] that are suitable for the 
image they describe [10]. 

The captions generated by most of the contemporary 
methods usually represent an objective and neutral descrip-
tion of the factual content of the scene. 



 

 

An example of a model designed to generate new cap-
tions with previously unseen combinations of objects is re-
ported in [11]. Authors proposed a multimodal Recurrent 
Neural Network (m-RNN) framework that is adapted to 
both the retrieval as well as to the sentence generation task. 
The model consists of a CNN and RNN, which interact with 
each other in a multimodal layer receiving three inputs: the 
word embedding layer, the recurrent layer, an image repre-
sentation. A final soft-max layer generates the probability 
distribution of the next word. 

In [17] authors introduce an end-to-end trainable Neural 
Image Caption (NIC) system, similar to [11] but with an 
LSTM variant of RNN as the decoder. The authors propose 
to use maximum likelihood estimation (MLE) principle for 
training the model. For its effectiveness, NIC became one 
of the most influential models, and other authors developed 
extensions on top of it [28, 29]. 

A similar end-to-end Long-Term Recurrent Convolu-
tional Network (LRCN), combining a CNN encoder and an 
LSTM decoder, is introduced in [19].  Authors investigated 
the effects of different architectures and found that using 
LSTM instead of a simple RNN, combined with a more 
powerful CNN, contributed to better performance. Adding 
more LSTM layers did not bring expected improvements. 

Different from the spatial attention model introduced in 
[25], the authors in [30] proposed a semantic attention 
model which combines different sources of visual infor-
mation through a feedback process to attend to fine details 
in images while having an end-to-end trainable system. 
Top-down features, extracted from the last convolutional 
layer of a CNN, serve as a guide where to attend. A set of 
bottom-up attributes are detected as candidates for atten-
tion.  Those with highest attention scores are then used by 
the attention mechanism which learns to attend to the se-
mantically important concepts. Since irrelevant attributes 
may redirect attention to wrong concepts, attribute predic-
tion plays a crucial role.  

A similar approach is presented in [31] where authors 
combine top-down and bottom-up attention processing to 
calculate attention at the object-level. Instead of treating de-
tected objects as bag-of-words that do not retain spatial in-
formation, they propose a different, feature-based ap-
proach.  Bottom-up attention mechanism, based on Faster 
R-CNN [2], proposes a set of salient image regions. Com-
bined with the more traditional top-down approach, this al-
lows us to reveal the structure of the scene better and to 
interpret better the relationships between objects, which be-
comes important in dealing with compositionally new im-
ages. 

Previously described attention models have a limitation 
in that they cannot selectively decide when to focus atten-
tion on the image. In [32] authors argue that directing at-
tention to the image at every time step becomes unneces-
sary for words that do not have a corresponding visual sig-
nal such as “a “, “for” etc. They introduce an adaptive at-
tention model that automatically decides whether to focus 
attention on the image or to use information stored in the 
decoder’s memory. An LSTM extension, called sentinel 
gate, produces an additional visual sentinel vector, which is 
used when the model decides not to attend to the image. 
The new context vector is modeled as a combination of the 

context vector of the spatial attention model and the visual 
sentinel vector. It was shown that the ability to decide when 
to attend to the image was also useful for better directing 
attention to the appropriate image regions, which allowed 
the model to achieve state-of-the-art results. 

B.  Image Captioning with Style 

There are two lines of work focused on enriching cap-
tions with more emotional content. The first group of au-
thors includes viewer’s attitude and emotions towards the 
image [29, 33, 34, 35], the second line of work includes 
emotional content from the image itself [36]. 

The authors in [29] were the first to incorporate positive 
and negative sentiments into captions. They proposed Sen-
tiCap, a switching RNN model with word-level regulariza-
tion which emphasizes sentiments. Two networks, consist-
ing of a CNN and an RNN, were used to generate stylized 
captions. One network was trained on a large image-caption 
dataset to generate standard factual descriptions, and the 
other was trained on a small dataset with sentiment polarity. 
Experiments showed that SentiCap was able to include the 
appropriate sentiment in 74% of the generated sentences. 

The SentiCap model is limited in its ability to scale be-
cause it requires words labeled with sentiment strength. To 
address this issue, the authors in [33] propose StyleNet, an 
end-to-end trainable model which generates captions in a 
humorous or romantic style (Figure 2). A factored LSTM 
is used to factorize the weight matrices to account for fac-
tual and non-factual aspects of the sentences. Multi-task 
learning is used to optimize the generation of factual cap-
tions, and stylized language modeling. Almost 85% of the 
human evaluators found the stylized captions to be more 
attractive than the corresponding factual descriptions. 

In [34] authors propose two mechanisms to inject sen-
timent into captions: (1) direct injection, in which sentiment 
is injected as an additional dimension at each time step, (2) 
injection by sentiment flow, in which sentiment is provided 
only at the first time step and then propagated over the 
whole sentence by a sentiment cell. Experiments showed 
that both methods were able to add sentiments, but direct 
injection generated more captions with sentiments.   

 
Figure 2. Comparison of factual and stylized captions [35] 

FaceCap [36] model presents a different point of view 
and embraces the emotions detected in facial expressions 
of people depicted in the images. It relies on the use of a 
facial expression recognition model to extract facial fea-
tures, which can be then used by an LSTM to generate cap-
tions. The authors observed that the model has improved in 
describing the actions on the scene. 



 

 

C.  Cross-Lingual and Multilingual Image Captioning 

Cross-lingual and multilingual image captioning refers 
to the task of generating a caption in one language given a 
corpus of descriptions in one or more different languages 
[37]. 

Several approaches exist to tackle such tasks such as di-
rect translation of generated captions, collecting a new da-
taset in a target language and its use for training, or learning 
a model from machine-translated texts. The first approach 
can give inferior results, among others because direct trans-
lations can worsen the errors in the generated descriptions 
[28]. Therefore, researchers are primarily focused on devel-
oping models that will be able to cope with different lan-
guages directly. 

Authors in [38] treat the problem as a visually-grounded 
machine translation task in which the image is used to re-
solve ambiguity. In the proposed multilingual image de-
scription model, visual features are complemented with 
textual features of the source language (English) to gener-
ate captions in German. 

The authors in [37] transfer the knowledge obtained 
from learning on English captions to generate captions in 
Japanese as the target language. The model was first pre-
trained on the large English dataset. Then, the trained 
LSTM was replaced with the new one, trained on the much 
smaller corpus of Japanese captions. The authors noticed 
that pretraining had the effect of learning on additional 
10,000 images with Japanese captions. Moreover, the use 
of captions that are not direct translations made the model 
easier to scale. 

Authors in [39] propose a single model capable of gen-
erating captions in multiple languages, but with a strong as-
sumption that the images with captions in different lan-
guages are readily available. A token, provided as initial in-
put, controls the choice of the target language. 

Previous approaches rely on datasets with human-writ-
ten captions in different languages. In [28] authors adopt a 
cheaper solution by using machine-translated text. To over-
come the lack of fluency of such translations, they intro-
duce a fluency estimation module to assign an importance 
score to the captions that are then chosen for training. Ex-
periments were performed on English-Chinese datasets and 
showed that the model, trained on a smaller dataset from 
which less fluent sentence where excluded, achieved com-
parable results to the baseline, trained on all the machine-
generated sentences (fluent or not). 

IV.     DATASETS 

The development of this research area greatly depends 
on the availability of large datasets that contain images with 
corresponding descriptions. In addition to the size of the 
dataset, an image captioning model benefits also signifi-
cantly from the quality of captions in the spirit of natural 
language and their adaptation to a given task. 

A.  Collecting datasets 

Images are collected primarily from photo-sharing ser-
vices, mostly Flickr1 or by harvesting the web. Unlike the 

                                                 
1 https://www.flickr.com 

image gathering, obtaining appropriate descriptions turned 
out to be much more challenging. 

As [10] pointed out, captions provided by users of 
photo-sharing websites are not suitable for the training of 
automatic image captioning systems. Such captions usually 
provide broader context, i.e., additional information that 
cannot be obtained by the image alone. Instead of using 
non-visual descriptions, [10] suggested focusing on general 
conceptual descriptions, i.e., those that refer to objects, at-
tributes, events and other literal content of the image. Such 
descriptions are collected, on a large-scale, through 
crowdsourcing services, such as Amazon Mechanical Turk 
(AMT) [40, 10, 41], which involves defining a task that is 
performed by untrained workers [42]. Due to the low cost 
and high speed, crowdsourcing became the preferred way 
of collecting image descriptions for large-scale datasets. 

B.  Datasets 

UIUC PASCAL Sentences [40] was one of the first im-
age-caption datasets, consisting of 1,000 images and asso-
ciated with five different descriptions collected via 
crowdsourcing. It was used by early image captioning sys-
tems [8], but due to its limited domain, small size, and rel-
atively simple captions it is rarely used. 

Flickr 30K [43] includes and extends previous Flickr 
8K [10, 40] dataset. It consists of 31,783 images showing 
everyday activities, events, and scenes described by 
158,915 captions obtained via crowdsourcing. 

Microsoft COCO Captions [41] dataset contains more 
complex images of everyday objects and scenes. By adding 
human generated captions, two datasets were created: c5 
with five captions for each of the more than 300K images 
and an additional, c40 dataset with 40 different captions for 
the randomly chosen 5K images. The c40 was created be-
cause it was observed [44] that some evaluation metrics 
benefit from more reference captions. 

Flickr 30K and MS COCO Captions are widely ac-
cepted as benchmark datasets for image captioning by most 
models using deep neural networks. 

V.     EVALUATION 

Accessing the accuracy of automatically generated im-

age captioning is a demanding task [44, 45]. The same im-

age can be described in various ways, focusing on different 

parts of the image, using a different level of abstraction or 

different level of knowledge about objects on the scene. It 

is obvious that by emphasizing different aspects of the im-

age, the resulting sentences can vary significantly while at 

the same time being entirely correct. In contrary, two cap-

tions can share most of the words and convey a different 

meaning. 

Evaluation of automatically generated captions can be 

performed by human subjects, either by experts [10] or by 

untrained workers through crowdsourcing platforms [19, 

22]. However, human-based evaluation creates additional 

costs; it is slow, subjective and difficult to reproduce [10, 

46]. A better alternative is the use of automatic metrics, 

which, in turn, are fast, accurate and inexpensive [45]. To 



 

 

be useful, metrics should match the rating of human evalu-

ators, but it turned out to be a goal that is difficult to 

achieve. Evaluation metrics should satisfy two criteria [22]: 

(1) captions that are considered good by humans should 

achieve high scores, (2) captions that achieve high scores 

should be considered good by humans. 

Image captioning is sometimes compared [47] to lan-

guage translation [8, 17] or with text summarization [48], 

which motivated the adaption of metrics developed initially 

for the evaluation of languages tasks [49, 50, 51]. All these 

metrics output a score indicating a similarity between the 

candidate sentence and the reference sentences. 

BLEU [49] is a popular metric for machine translation 

evaluation and one of the first metrics used to evaluate im-

age descriptions. It computes the geometric mean of n-gram 

precision scores multiplied by a brevity penalty in order to 

avoid overly short sentences. 

METEOR [50] is another machine translation metric. It 

relies on the use of stemmers, WordNet [52] synonyms and 

paraphrases tables to identify matches between candidate 

sentence and reference sentences. 

ROUGE [51] is a package of measures initially devel-

oped for the evaluation of text summaries. For image cap-

tioning, a variant ROUGEL is usually used, which com-

putes F-measure based on the Longest Common Subse-

quence (LCS), i.e. a set of words shared by two sentences 

which occur in the same order, without requiring consecu-

tive matches. 

CIDEr [44] is a metric designed for the evaluation of 

automatically generated image captions. It measures the 

similarity between the candidate sentence and a set of hu-

man-written sentences by performing a Term Frequency 

Inverse Document Frequency (TF-IDF) weighting for each 

n-gram. 

SPICE [45] is a metric designed for image caption eval-

uation. It measures the quality of generated captions by 

computing an F-measure based on the propositional seman-

tic content of candidate and reference sentences represented 

as scene graphs [53]. 

The metrics above represent a standard set of metrics 

usually reported in papers. Their popularity can be at-

tributed to their availability through the Microsoft COCO 

caption evaluation server [41], which enables a consistent 

comparison of different models. 

However, it was shown [47, 10] that automatic metrics 

do not always correlate with human judgments. This was 

particularly evident during the Microsoft COCO 2015 Cap-

tioning Challenge in that some models outperformed hu-

man upper bound according to automatic metrics, but hu-

man judges demonstrated a preference for human-written 

captions [54]. It seems that “humans do not always like 

what is human-like” [44]. Since there is no best metric, 

some authors [45, 46] advise the use of an ensemble of met-

rics capturing various dimensions, such as grammaticality, 

saliency, correctness or truthfulness. In [22, 46] new eval-

uation metrics were proposed. 

VI.     CONCLUSION 

This paper presents an overview of recent advances in 

image captioning research, with a particular focus on mod-

els employing deep encoder-decoder architectures. The 

main advantage of such architectures is in that they are 

trainable end-to-end, mapping directly from images to sen-

tences. 

An important extension of the basic encoder-decoder 

framework is the attention mechanism, which enables to fo-

cus on the most salient parts of the input image while gen-

erating the next word of the output. We group the related 

work into three types regarding the task: standard image 

captioning (with or without an attention mechanism), im-

age captioning with style and cross-lingual or multilingual 

image captioning. 

Large vision and language datasets have also contributed 

significantly to the development of the field. Additional 

features of the new datasets, such as emotions or descrip-

tions in different languages, will certainly stimulate even 

faster advances in the periods to come. 

However, there are some important tasks that are still un-

resolved, such as generating captions more in the spirit of 

the human descriptions, automatic adaptation of descrip-

tions to the given task, and perhaps the most challenging 

among them, automatic assessment of the generated cap-

tions, since there are still no metrics to match human eval-

uation fully. 
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