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 

Abstract— As it is well known today, the universe 

continues to expand, even at an accelerating rate. The 

main reason for it is an unknown energy called a dark 

energy. This energy occupies about 68 percents of the 

total energy in the universe. One of the candidates for the 

source of dark energy is a cosmological constant Λ.  

Meanwhile, recently developed Relativistic Alpha Field 

(RAF) theory predicts (among the others) that the gravitational 

force becomes positive (repulsive) if (GM/rc2) > 1, that could be 

a source of a dark energy. Here we derived equations of the 

universe motion using field parameters from RAF theory. These 

equations show that positive (repulsive) gravitational force 

really can produce an accelerating rate of the universe motion 

and therefore could be a candidate for the source of a dark 

energy. In that sense a dark energy can be seen as a positive 

(repulsive) gravitational energy. In order to compare the RAF 

theory solution of the universe motion with one of the existing 

solution, here we also derived related solution with the 

cosmological constant Λ.  

 

Index Terms—Relativistic alpha field theory, Equations of 

the universe motion, Dark energy problem solution, Positive 

(repulsive) gravitational force 

 

I. INTRODUCTION 

  As it is well known today, the universe continues to expand, 

even at an accelerating rate. The main reason for it is an 

unknown energy called a dark energy. This energy occupies 

about 68 percent of the total energy in the universe. There 

exist more dynamic models of the universe motion. The most 

known is the model that has been developed independently by 

Alexander Friedmann 1,2, Georges Lemaitre 3,4, Howard 

Percy Robertson 5,6,7 and Arthur Geoffrey Walker 8. 

Therefore, it has been named Friedmann – Lemaitre – 

Robertson – Walker (FLRW) model. In the literature one can 

find also the names Friedmann – Robertson – Walker (FRW), 

or Robertson – Walker (RW), or Friedmann – Lemaitre (FL) 

model. In the modern cosmology it is also called Standard 

Model (ST) 9. The FLRW model describes a homogeneous, 

isotropic expanding or contracting universe. The general 

metric has been introduced on the assumption that the 

universe geometric properties are homogeneous and 

isotropic, i.e. the Cosmological Principle is valued. 

Empirically, this is justified on scales larger than 100 Mpc. 

They also used the Einstein field equations 10,11 for 

derivation of the “scale factor” of the universe as a function of 

time. The FLRW model is well described in the references 

1-9, 12-18. 
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     The all have been started by Einstein, who proposed a 

static model of the universe, based on the cosmological 

constant  10,11. Then, Edwin Hubble discovered in 1929, 

that our universe is expanding. Georges Lemaitre proposed 

his theory in 1931, that the universe is born from praatom 

and George Gamov introduced in 1948 the new theory about 

praatom , the Big Bang theory. In 1979 Alan Guth proposed 

the inflationary model of the universe, with explanation why 

it is considered geometrically flat 19. Today the universe 

continues to expand, and at an accelerating rate 20. 

Caldwell, Dave and Steinhardt proposed the quintessence 

mechanism 21. In the Friedmann – Lemaitre – Robertson – 

Walker cosmologies [1-8], both the cosmological constant 

and the quintessence approaches are added to the standard 

Cold Dark Matter (CDM) model, what is resulted with known 

CDM and QCDM models, respectively. Parker and Raval 

proposed a new Vacuum Cold Dark Matter (VCDM) model  

22.  Steinhard and Turok offered the Cyclic Universe 

model, as a radical new cosmological scenario 23. Recently, 

some new aspects of the universe motion are presented in the 

references 24-36. In that context some kind of a phantom 

scalar field as the source of the universe motion is discussed 

among the others in the reference 37. The main problem of 

the all models of the universe motion is to answer (among the 

others) to the important questions of the cosmology 23: 

what occurred at the initial singularity?, how old is the 

universe?, how big is the universe? and what is its ultimate 

fate? One of the new approaches to the derivation of the 

velocity and acceleration equations of the universe motion for 

 = constant and  = f(r) has been proposed in 35. The 

solution that  = f(r) has the important influence to the 

velocity and acceleration equations of the universe motion. 

Recently, a new method for testing of the Cosmological 

Principle by using an isotropic blackbody cosmic microwave 

background radiation, as evidence for a homogeneous 

universe, has been presented in the reference 38.  

   Today we know that the universe continues to expand, even 

at an accelerating rate. This acceleration is caused by an 

unknown energy called a dark energy. But we do not know 

the source of dark energy. One of the candidates for the 

source of dark energy is a cosmological constant Λ.  

Meanwhile, recently developed Relativistic Alpha Field 

(RAF) theory 39,40,41 predicts (among the others) that the 

gravitational force becomes positive (repulsive) if (GM/rc2) > 

1, that could be a source of a dark energy. Here we derived 

equations of the universe motion using field parameters from 

RAF theory. These equations show that positive (repulsive) 

gravitational force really can produce an accelerating rate of 

the universe motion and therefore could be a candidate for the 

source of a dark energy. In that sense a dark energy can be 

seen as a positive (repulsive) gravitational energy. In order to 
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compare the RAF theory solution of the universe motion with 

one of the existing solution, here we also derived related 

solution with the cosmological constant Λ.  

II. FRIEDMANN – LEMAITRE – ROBERTSON – WALKER 

METRIC  MODEL  

   The FLRW model describes a homogeneous, isotropic 

expanding or contracting universe. The general metric has 

been introduced on the assumption that the universe 

geometric properties are homogeneity and isotropy, i.e. the 

Cosmological Principle is valued. Empirically, this is 

justified on scales larger than 100 Mpc. They also used the 

Einstein field equations 10,11 for derivation of the “scale 

factor” of the universe as a function of time. The question of 

whether the universe is spatially homogenous and isotropic 

on the largest scales is of fundamental importance to 

cosmology but has not yet been answered decisively. 

Recently, a new method for testing of the Cosmological 

Principle by using an isotropic blackbody cosmic microwave 

background radiation, as evidence for a homogeneous 

universe, has been proposed in the reference 38. 

   General metric that satisfies the homogeneity and isotropy 

of the space, as well as the possibility that the special 

components of the metric can be time dependent, is described 

by the following line element: 

2 2 2 2 2 2 2ds c d c dt ( t ) d .      α                           (1) 

Here ds is the line element, c is the speed of the light in 

vacuum, τ is a proper time, t is a coordinate time, ( t )α  is a 

“scale factor” and 
2d  is a three dimensional spatial metric 

that describes a flat space, or a sphere with constant positive 

curvature, or a hyperbolic space with constant negative 

curvature. The term 
2d  is normally written as a function of 

three spatial coordinates. There are several conventions for 

describing this spatial metric. In the case of reduced 

circumference polar coordinates, the spatial metric has the 

form: 

2
2 2 2 2 2 2 2

21

dr
d r d , d d sin d .

r
         

K
  (2) 

In the previous relation K  is a constant representing the 

curvature of the space. Here one should distinguish the two 

common unit conventions.  

   In the first one K may be taken to have unit of length-2, in 

which case r has unit of length and ( t )α  is unitless. In that 

case K  is the spatial (Gaussian) curvature of the space at the 

time when ( t )α  = 1 (i.e. today). Also r is sometimes called 

the reduced circumference because it is equal to the measured 

circumference of a circle, at that value of r, centered at the 

origin, divided by 2π, like the r of Schwarzschild coordinates. 

If the shape of the universe is hyperspherical and R(t) is the 

radius of curvature (R0 in the present day), then 

( t )α =R(t)/R0. If K is positive, then the universe is 

hyperspherical. If K is zero, then the universe is flat. Finally, 

if K is negative, then the universe is hyperbolic. 

   In the second common unit convention K may be chosen 

from the set of numbers (-1,0,1) for negative (an open 

3-hyperboloid), zero (flat, i.e. Euclidian space) and positive 

(closed 3-sphere) curvature, respectively. In that case r is 

unitless and ( t )α  has unit of length. If K = + 1, then ( t )α  

is the radius of curvature of the space that sometimes may be 

written by R(t). If K = 0, then ( t )α  may be fixed to any 

arbitrary positive number at one particular time. If K = -1, 

then (loosely speaking) one can say that i· ( t )α  is the radius 

of curvature of the space. In the case of positive curvature the 

reduced circumference coordinates cover only half of the 

3-sphere. This is a disadvantage of the reduced circumference 

coordinates.  

III. FRIEDMANN EQATIONS  

   Following the assumption that the universe geometric 

properties are homogeneous and isotropic, i.e. the 

Cosmological Principle is valid, the Friedmann equations 

have been first derived by Alexander Friedmann in 1922 1. 

The related equations for negative spatial curvature have been 

presented by Friedmann in 1924 2. He also used the full 

form of the Einstein’s field equations in the General Theory 

of Relativity that is given by the relation 10,11: 

4

1 8
0 1 2 3

2

G
R g R g T , , , , , .

c
   


          (3) 

In this relation Λ is the Einstein’s cosmological constant, G is 

the Newton’s gravitational constant, c is the speed of the light 

in a vacuum and Tη is the energy-momentum tensor. 

Determination of the time evolution of the scale factor ( t )α  

requires the Einstein’s field equations together with a way of 

calculation of density, ( t ) , such as a cosmological equation 

of state. If the energy-momentum tensor, T , is similarly 

assumed to be isotropic and homogenous, then the metric (1) 

has an analytic solution to Einstein’s field equations (3) 

giving the Friedmann equations in the form: 
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                 (4) 

Here ( t )α is the scale factor with related time derivations α  

and α , while   and p  are fluid mass density and pressure, 

respectively. The presented equations (4) are the basis of the 

standard big bang cosmological model including the current 

ΛCDM model.  Following the mentioned assumption that the 

universe is isotropic and homogenous, the model (4) can be 

used as a first approximation for the evolution of the real, 

lumpy universe, because it is simple for calculation. Further 

more, the models which calculate the lumpiness in the 

universe can be added to this model as extensions.  

   The pair of the equations in (4) is equivalent to the 

following pair of the equations: 

2 2

2

2
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                               (5) 
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The first equation in (5) has been derived from the 00 

component of the Einstein’s field equations (3). On the other 

side, the second equation in (5) is derived from the trace of 

the Einstein’s field equations (3). It is easy to see that the first 

equation in (5) can be rewritten into the form of the first 

equation in (4). The second equation in (5) can be obtained by 

substitution of the term  
2α/α from the first to the second 

equations in (4). This confirms that the pair of the equations 

in (4) is equivalent to the related pair of the equations in (5). 

Some cosmologists call the second equation in (5) as 

Friedmann acceleration equation and reserve the term 

Friedmann equation for only the first equation in (5). 

   Now, one can employ the time derivative of the first 

equation in (5) and combine it with the second equation in 

(5). As the result one obtains the new pair of the equations 

that are also equivalent to the pairs of the equations in (4) and 

(5): 

2

2

2
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4 3

3 3

p
,

c

G p c
.
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                               (6) 

Here the special curvature index serving as a constant of 

integration for the second equation in (6). The first equation 

in (6) can be derived also from thermo-dynamical 

consideration and is equivalent to the first law of 

thermodynamics, assuming that the expansion of the universe 

is an adiabatic process. This assumption has been implicitly 

included into the derivation of the Friedmann – Lemaitre – 

Robertson – Walker metric. The second equation in (6) states 

that both the energy density and the pressure cause the 

expansion rate of the universe, α , to decrease. It means that 

both the energy density and the pressure cause a deceleration 

in the expansion of the universe. This is the consequence of 

gravitation, including that pressure is playing a similar role to 

that of energy (or mass) density. This is, of course, in 

accordance with the principles of general relativity. On the 

other side, the cosmological constant, Λ, causes acceleration 

in the expansion of the universe. 

   Further, one can introduce the density parameter,  , as the 

ratio of the actual (or observed) density,  , to the critical 

density, c , of the Friedmann universe. This ratio determines 

the overall geometry of the universe. It is well known that in 

the earlier models, which did not include a cosmological 

constant term, the critical density was regarded also as the 

watershed between an expanding and a contracting Universe. 

Recently, the critical density is estimated to be approximately 

five atoms (of monatomic hydrogen) per cubic meter, 

whereas the average density of ordinary matter in the 

Universe is believed to be 0.2 atoms per cubic meter 12. 

Meanwhile, a much greater density comes from the 

unidentified dark matter. From the General Relativity, we 

know that both ordinary and dark matter contribute in favor of 

contracting of the universe. But, the largest part of density 

comes from the so-called dark energy that accounts for the 

cosmological constant term. Although the total density of the 

universe is equal to the critical density (exactly, up to 

measurement error), the dark energy does not lead to 

contraction of the universe. In fact, the dark energy 

contributes in favor of expanding of the universe.    

   Recently, the spatial geometry of the universe has been 

measured by the WMAP spacecraft. The result of that 

measuring showed that the spatial geometry of the universe is 

nearly flat. Following this result one can conclude that the 

universe can be well approximated by a model without the 

spatial curvature parameter K (i.e. K = 0). Meanwhile, this 

does not necessarily imply that the universe is infinite. It is 

because our measuring is related to the observation part of the 

universe that is limited, but the universe is much larger than 

the part we can see.  

IV.  EQUATIONS OF THE UNIVERSE MOTION IN AN ALPHA 

FIELD 

   Here we show new approach to the description of the 

universe motion. This approach is based on the new 

Relativistic Alpha Field (RAF) theory 39,40,41. This theory 

includes two non-dimensional field parameters  and ' as 

functions of the space-time coordinates. Thus, for a 

gravitational potential field, the field parameters  and ' 

have been identified by employing the Einstein's field 

equations in General Relativity 25,26,39. 

   It has been shown that the general nondiagonal form of the 

line element, ds2, of RAF theory, in the spherical polar 

coordinates, can be described by the equation: 

 

 

2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2

2

ds c dt k c dt dr

dr r d r sin d , , k / ,

ds c dt cdt dr dr r d r sin d .

     

             

          

 

                                                                                           (7) 

Here, c is the speed of the light in a vacuum, r is a radius 

vector, θ is an angle between radius vector r and z-axis, and  

is an angle between projection of a radius vector r on (x-y) 

plane and x-axis. Parameter k =  1 (see 39). The general 

solutions of that line element are presented by the relations: 

2 2
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   

   

                                                                                            (8) 

Here RAFT means RAF theory, GM/c2 is the Newton’s 

constant of integration, G is a gravitational constant, M is a 

total gravitational mass, r is a gravitational radius, Λ is a 

cosmological constant and c is the speed of the light in a 

vacuum. In RAF theory it is assumed that the cosmological 

constant  = 0 and the energy momentum tensor T  0. If 

displacement four-vector dX is defined in frame K by the 

expression: 
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    0 1 2 3idX K cdt,dr,d ,d dx , i , , , ,             (9)  

then the related covariant metric tensor of the line element (7) 

has the form 39: 

2

2 2
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g .
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Here the no null components of the metric tensor gμ  are 

given by the relations: 
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The related determinant of the metric tensor (10) has the 

forms: 

 

 

4 2 2

2 2

1
2

1 1

det g r sin , r , ,

det g , .
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   (12) 

In the previous relation we use the normalization for r = 1,  = 

 / 2, and the well known condition for the metric tensor of 

the line element det (gμη) = -1. As the result we obtain the 

simple relation between field parameters ν and λ. 

   (a) Proposition 1. If the line element in an alpha field is 

defined by the relations (7) to (12) then the dynamic model of 

the Universe motion for  = const. is given by the equations: 
2 2 2
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            (13) 

Comparing the first equation in (13) with the first Friedmann 

equation in (4), and the second equation in (13) with the 

second Friedmann equation in (5), one can conclude that both 

equations have the same form as the Friedmann equations if 

we include the substitutions r = α , r = α  and r= α . Thus, 

if the equations (13) describe the universe motion, then the 

radial coordinate r (t) has the roll of the scale factor α (t).  

The second equation in (13) states that both the energy 

density and the pressure cause a deceleration in the expansion 

of the universe. This is the consequence of gravitation, 

including that pressure is playing a similar role to that of 

energy (or mass) density. This is, of course, in accordance 

with the principles of general relativity. On the other side, the 

cosmological constant, Λ, causes acceleration in the 

expansion of the universe. In that case the cosmological 

constant, Λ, plays the role of the dark energy. 

    If the line element in an alpha field is defined by the 

relations (7) to (12) then the dynamic model of the Universe 

motion in RAF theory is given by the equations: 
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Comparing the first equation in (14) with the first Friedmann 

equation in (4), one can conclude that both equations have the 

same form of the two parts of the left side and the first part of 

the right side if the substitutions r = α and r = α  are valid.  

Comparing the second equation in (14) with the second 

Friedmann equation in (5), one can conclude that both 

equations have the same form of the left side and of the first 

part of the right side if the substitutions r = α  and r= α are 

valid. Thus, if the equations (14) describe the universe 

motion, then the radial coordinate r (t) has the roll of the 

scale factor α (t). The first part of the right side of the second 

equation in (14) states that both the energy density and the 

pressure cause a deceleration in the expansion of the 

universe. This is the consequence of gravitation, including 

that pressure is playing a similar role to that of energy (or 

mass) density. This is, of course, in accordance with the 

principles of general relativity. On the other hand, the second 

part of the right side of the second equation in (14) causes 

acceleration in the expansion of the universe. This is the 

consequence of the positive (repulsive) gravitation force 

presented by RAF theory in 39,40,41. This fact tells us that 

the positive (repulsive) gravitational force could be the source 

of the so called dark energy. Of course, this should be 

confirmed by the related experiments.  

   (b) Proof of the Proposition 1. In order to prove of the 

proposition 1, for both cases  = const. and in RAF theory, 

one can start with the Lagrangean of the line element (7):  
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In the relation (15) d is the differential of the proper time  

and dxμ, dxη, are components of the contravariant 

displacement four-vector dX in (9). Applying the equations 

from (7) to (11) and using (15) one obtains the Lagrangean in 

the following form: 

1 2
2 2

2 2

2 22 2
2

2 2

1 1
2

/

dt dt dr dr
c

d d d dc c
L .

r d r d
sin

d dc c

       
           

          
  

                

 

                                                                                         (16) 

The related Euler – Lagrange equations are given by the 

expressions: 
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1 2 3

0 1 2 3
i i

i
o i

L d L
, i , , , ,

dz z

dz
z t , z r, z , z , z .

d

  
  

  

      






               (17)         

Applying  i = 0 to the relation (17) one obtains energy 

conservation equation: 

0

0

L L
const.

t t

dt dr d
, .

d c d d

 
     

 

 
      

  





                              (18)  

Here parameter κ is the energy conservation constant. 

Applying  i = 3 to the relation (17) one obtains angular 

momentum conservation equation: 

 
2 2

2

0

0

L L
const. h

r sin dh
h, h .

dc

 
    

 

 
   








                             (19)  

Parameter h is the angular momentum conservation constant. 

In the case  =  / 2 (as in Newtonian theory) the angular 

momentum conservation equation (19) is transformed into 

the well-known relation: 

2

2

0

0

L L
const. h

r dh
h, h .

dc

 
    

 


   








                                (20)  

Now, substituting the relations derived from (18) and (12), 

respectively:  

1 21
dt dr

, ,
d c d

 
       

  
                            (21)  

into the equation (16), and employing   = L (where  = 1 for a 

time-like geodesics and  = 0 for a null geodesics) one obtains 

the following relation: 

  

 

2 2 2 2 2 2

2 2 2 2
2 2

1
1

2

2 2

r r sin

c c dr d d
, r , , .

d d d

      
 

   
         

  

 

 

                                                                                         (22) 

This relation represents the generalized energy equation of a 

particle with unit mass, where the sum of the kinetic energy 

Ek and potential energy Ep is equal to constant: 

  

 

2 2 2
2 2 2 2 2 2

2
2 2

1
1

2 2

2

k p

k p

c
E r r sin , E ,

c
const., E E const.

           
 

      

 

                                                                                          (23)                                                                                             

For the case that parameter Λ = constant, the relation (22) is 

transformed into the equation: 

                                

 

 

2

2

2 2 2 2 2 2

2

2 2 2

2 2
2 2

2

3

1 2
1

2 3

2

3

2 2

GM
const. r ,

r c

GM
r r sin r

r c

GM
r c

r c c
.


      

  
          

   

 
   

 
    

    (24)          

If parameter Λ = 0 and  =  / 2 (as in Newtonian theory), 

then the relation (24) can be transformed into the well-known 

Schwarzschild energy equation:  

 
2 2

2 2 2 2 2

2

1 2
1

2 2

GM GM c
r r k .

rrc

   
        

  

       

                                                                                         (25) 

Further, this relation can be reduced to the Newtonian energy 

equation by neglecting the term 2GM/rc2 : 

 
2 2

2 2 2 2 21

2 2

GM c
r r k .

r


      
 

           (26) 

Thus, the energy equation (24) includes both 

Schwarzschild’s and Newtonian energy equations as special 

approximations in a gravitational field.  

   In RAF theory the relation (22) is transformed into the new 

form of the generalized energy equation:  

 

 

2

2 2

2
2 2 2 2 2

2 2

2
2 2

2 2 2
2 2

2

1 2
1

2

2

2 2

GM GM
RAFT

rc rc

GM GM
r r sin

rc rc

GM GM
c

rc rc c
.

 
     

 

   
               

  
      

    

  (27) 

This relation also represents that the sum of the kinetic energy 

Ek and potential energy Ep of a particle with unit mass is equal 

to constant: 

 

 

2
2 2 2 2 2

2 2

2
2 2

2 2 2
2 2

1 2
1

2

2

2 2

k

p

GM GM
E r r sin ,

rc rc

GM GM
c

rc rc c
E , const.

   
                

  
      

     

 

   

                                                                                         (28) 

If the quadratic term  
2

2GM / rc is neglected, and 

employing  =  / 2 (as in Newtonian theory), then the 

relation (27) is transformed into the Schwarzschild energy 

equation (25). 
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   Now, one can assume that the motion is in the radial 

direction, only. This means that  = 0 and  = 0. For that 

case, the generalized energy equation (22) is transformed into 

the form: 

 
2 2 2 2 2

2 2

2 2 2

r c c
.

 
    


                               (29) 

For the case that parameter Λ = constant, the relation (29) is 

transformed into the equation:  

 

2

2

2 2 2

22 2
2 2

2

3

2

3

2 2 2

GM
const. r ,

r c

GM
r c

r cr c
.


      

 
   

 
    



         (30) 

Now one can apply a mass density , spatial curvature 

constant K , and  = 1 (for a time-like geodesics):  

   
2

2 2 2 2

3 2 2

2 8
1

3

GMr G
r , .

r c c


        K        (31) 

By including the substitutions from (31), the second equation 

in (30) is transformed into the relation: 

2 2 2

2

8

3 3

r c c G
.

r r

  
    

 

 K
                                     (32) 

Comparing this equation with the first Friedmann equation in 

(4), one can conclude that both equations have the same form 

and could be equal each to the other for substitution r = α  

and r = α . Thus, if the equation (32) describes the universe 

motion, then the radial coordinate r (t) has the roll of the 

scale factor α (t).  

   Applying a time derivative of (32) one obtains the 

following equation: 

2
2

2

4 8

3 3 3

4
2

3 3

G G c
r r r r,

r

r G r c
.

r r

   
    

  
     

 










                       (33) 

In order to calculate a time derivative of the mass density , 

one should assume that the expansion of the universe is an 

adiabatic process. In that case, the thermo-dynamical 

approach can be considered.  This is equivalent to the first 

law of thermodynamics and is resulting with the first equation 

in (6): 

2

2

3

3

p
,

c

p
.

c

 
        

 

 
     

 


 




α
α r, α r,

α

r

r

                 (34) 

Including the second equation from (34) into the second 

equation in (33) one obtains the following relation: 

                                                    
2

2

4 3

3 3

G p c
.

c

  
    

 

r

r
                                      (35) 

Comparing this equation with the second equation in (5), one 

can conclude that both equations have the same form and 

could be equal each to the other for substitution r =α  and 

r = α . Thus, if the equation (35) describes the universe 

motion, then the radial coordinate r (t) has the roll of the 

scale factor α (t). The equation in (35) states that both the 

energy density and the pressure cause a deceleration in the 

expansion of the universe. This is the consequence of 

gravitation, including that pressure is playing a similar role to 

that of energy (or mass) density. This is, of course, in 

accordance with the principles of general relativity. On the 

other side, the cosmological constant, Λ, causes acceleration 

in the expansion of the universe. 

   From the previous consideration one can take the equation 

from (32) and the equation from (35) and put them together: 

2 2 2

2

2

2

8

3 3

4 3

3 3

r c c G
const. ,

r r

G p c
.

c

  
       

 

  
     

 





K

r

r

      (36) 

The first relation in (36) is the velocity equation, while the 

second one is the acceleration equation. The both equations 

are valid for the case where parameter Λ is a constant. Thus, 

the Proposition 1, related to the case where Λ = const. plays 

the role of the dark energy, is finished by the relations in (36).  

   In the case of RAF theory, the relation (29) is transformed 

into the equation:  

 

2

2 2

2
2 2

2 22 2
2 2

2

2

2 2 2

GM GM
RAFT ,

rc rc

GM GM
c

rc rcr c
.

 
     

 

  
      

    


    (37) 

Now one can apply a mass density ρ, spatial curvature 

constant K , and  = 1 (for time-like geodesics): 

   

2 2
2 2

3 2 2 3 2 2

2 22
2 2 2 2

3 2 2

2 8 4

3 3

4
1

3

GMr G GMr G
r , r ,

r c c r c c

GMr G
r , .

r c c

 
   

   
               

K

(38) 

By including the substitutions from (38), the second equation 

in (37) is transformed into the relation: 

2 2 2

2 2

8 2
1

3 3

r c G G r
.

r r c

    
          

 K
                      (39) 

Comparing this equation with the first Friedmann equation in 

(4), one can conclude that both equations have the same form 

of the two parts of the left side and the first part of the right 

side if the substitutions r = α  and r = α are valid. Thus, if 
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the equation (39) describes the universe motion, then the 

radial coordinate r (t) has the roll of the scale factor α (t).  

   Applying a time derivative of (39) one obtains the 

following equation: 

2
2

2

2

2

4 8 4
1

3 3 3

4 4
2 1

3 3

G G G r
r r r

r c

r G r G r
.

r r c

      
         

    
         










       (40) 

In order to calculate a time derivative of the mass density , 

one should assume that the expansion of the universe is an 

adiabatic process. In that case, the thermo-dynamical 

approach can be considered.  This is equivalent to the first 

law of thermodynamics and is resulting with the first equation 

in (6): 

2

2

3

3

p
,

c

p
.

c

 
        

 

 
     

 







α
α r, α r,

α

r

r

                (41) 

Including the second equation from (41) into the second 

equation in (40) one obtains the following relation: 

2

2 2

4 3 4
1

3 3

G p G r
.

c c

    
        

r

r
                        (42) 

Comparing this equation with the second equation in (5), one 

can conclude that both equations have the same form of the 

left side and of the first part of the right side if the substitution 

r = α  and r = α are valid. Thus, if the equation (42) 

describes the universe motion, then the radial coordinate r (t) 

has the roll of the scale factor α (t). The equation (42) states 

that the first part of the right side causes a deceleration in the 

expansion of the universe. On the other hand, the second part 

of the right side causes acceleration in the expansion of the 

universe. 

   From the previous consideration one can take the equation 

from (39) and the equation from (42) and put them together: 

2 2 2

2 2

2

2 2

8 2
1

3 3

4 3 4
1

3 3

r c G G r
RAFT ,

r r c

G p G r
.

c c

    
           

    
         





K

r

r

  

                                                                                         (43) 

The first relation in (43) is the velocity equation, while the 

second one is the acceleration equation. The both equations 

are valid in RAF theory. Thus, the Proposition 1, related to 

RAF theory 39,40,41, where positive (repulsive) force plays 

the role of the dark energy, is finished by the relations in (43). 

This fact tells us that the positive (repulsive) gravitational 

force could be the source of the so called dark energy. Of 

course, this should be confirmed by the related experiments. 

   The presented results in RAF theory can also be interpreted 

by the assumption that the so called cosmological constant is 

the function of gravitational radius, f ( r )  ,  (see 35). 

V. CONCLUSION 

   The new derivations of the dynamic equations of the 

universe motion, for the cases Λ = constant and RAF theory 

approach, are proposed. These equations are compared with 

the well known Friedmann equations. In the model with Λ = 

constant the acceleration in the expansion of the universe is 

caused by parameter Λ. On the contrary, in the model 

obtained by RAF theory approach, the gravitational positive 

(repulsive) force causes acceleration in the expansion of the 

universe. In the Relativistic Alpha Field (RAF) theory 

39,40,41, one of  the predictions is  that the gravitational 

force becomes positive (repulsive) if (GM/rc2) > 1, that could 

be a source of a dark energy. Here derived equations of the 

universe motion show that positive (repulsive) gravitational 

force really can produce an accelerating rate of the universe 

motion and therefore could be a candidate for the source of a 

dark energy. In that sense a dark energy could be seen as a 

positive (repulsive) gravitational energy. 
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