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Abstract – Effective use of resources available on 

heterogeneous MPSoC platforms can only be achieved 

through careful resource allocation and scheduling. The 

diversity of processing and memory elements will manifest 

itself in the total time and resources required to perform a 

task or execute an application. Choosing the right platform 

element is the key and the first step is performance 

estimation.  

This paper tackles the issue of finding the most suitable 

processing element for each part of the software application 

through a novel approach – elementary operation cost. The 

cost of each elementary operation is experimentally 

determined through a set of carefully devised benchmarks 

and is used for estimating duration of complex functions 

found in common applications such as JPEG, AES etc. By 

raising the abstraction level on which the execution time is 

calculated from instruction to operation level, common 

problems in performance estimation such as pipelining and 

branch prediction can be avoided and estimation accuracy 

is improved. Demonstrated results show that the average 

error rate of estimated execution times for various 

benchmarks is around six percent compared to the actual 

execution times. 
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I. INTRODUCTION 

Heterogeneous multiprocessor systems have continuously 

been used in embedded systems for almost a decade due 

to their ability to provide better performance at lower 

cost, area and power demand. Much work has been done 

to achieve, in each new generation of systems, even better 

performance at lower cost and design time while 

maintaining software flexibility.  Exploring large design 

space poses the greatest challenge in MPSoC design. 

Choosing the right platform architecture which will meet 

software application demands in early stages of design 

process is the key to reducing development cost and time-

to-market. The widely accepted approach [1] to overcome 

this challenge is to start the design space exploration at 

high levels of abstraction allowing for fast evaluation of 

available options. In early design stages the hardware 

platform is still not finished and performance must be 

evaluated either through simulation or analytical 

methods. This article proposes a novel analytical method 

for software performance estimation on heterogeneous 

MPSoC platforms based on elementary operation cost 

concept. This method ensures high accuracy of results 

while maintaining high level of abstraction and thus 

enabling fast design space exploration.    

 

II. RELATED WORK 

In early days of heterogeneous platforms research and 

design, Instruction Set and Cycle-Accurate Simulators 

(ISS/CAS) have been invaluable tools for early 

performance estimation [2]. However, their high accuracy 

came at the cost of long simulation time and large design 

effort. More recent work has adopted the TLM [3] 

approach which allows much faster functional and 

performance (i.e. timing) evaluation with possibility to 

even simulate the behaviour of RTOS. While TLM gives 

very good results in functional simulation, the issues arise 

in achieving high accuracy of timing estimation. Main 

challenge is to accurately describe software application 

performance on different processing elements and 

provide it as an input to TLM. Several different 

approaches exist, mostly relying on some form of 

application source code annotation and transformation 

into SystemC, which is suitable for later use in TLM.  

Authors in [5] rely on source level annotation. They all 

break down the application structure into Basic Blocks 

(mostly using GCC compiler) and use ISS or CAS to 

estimate performance for each block. In later stages the 

application is simulated (speed comparable to real-time 

execution of application) with different inputs, mostly as 

a part of a transaction-level model. Rate error remains 

under ten percent, in most work around six percent, 

within acceptable boundaries.  

A slightly different approach is presented in [4]. The 

authors introduce annotation at intermediate 

representation (IR) level, a lower level of abstraction, in 

order to capture compiler optimizations more accurately.  

However, all these approaches have trouble with the 

inter-block dependency (pipeline effects). The problem is 

partially solved by introducing pair-wise execution of 

neighbour blocks or simulation of as many possible basic 

block combinations at the cost of total simulation time.  

A rather different approach is presented in [9], where 

authors use analytical estimation instead of simulation. 

MIPRO 2016/CTS 1409



This method employs neural networks which receive the 

number of each type of instruction of software 

application and give the estimation of number of cycles 

(i.e. total duration) as output. The results are little less 

accurate with around 17 percent average error rate, and 

the network training time is a bit longer, but the system is 

more flexible and faster in later stages.   

 

III. ELEMENTARY OPERATION CONCEPT 

Fast and efficient exploration of the large design space, 

present in MPSoC design, requires early performance 

estimation, as mentioned earlier. Consequently, the 

performance estimation must be conducted at very high 

level of abstraction using application and platform 

models. It is also very important that this models not only 

enable fast execution but also retain a very high degree of 

accuracy in performance estimation. Thus it is extremely 

important to accurately describe the heterogeneous 

platform.  

In earlier work regarding the impact of heterogeneity on 

MPSoC performance [10] it has been observed that the 

performance of a particular type of processing element in 

execution of simple tasks (e.g. calculation of square root 

of an integer number) highly correlates with the 

performance of that same element when executing a more 

complex task (e.g. JPEG compression). In this paper that 

concept is further elaborated.  

A. Concept Overview 

Great majority of authors agree that the key to source-

level performance estimation is to identify a unit of code 

small enough to enable modular and reusable approach 

and in the same time large enough to diminish the 

pipeline effects. Assembly level instructions satisfy only 

the first condition. Basic blocks, at C source level, are 

much more resilient to pipeline effects but their 

reusability is often questionable – two different functions 

(tasks) almost never have two identical basic blocks. 

Thus ISS must be used each time a new function requires 

timing estimation. Moreover, pipeline effects (i.e. branch 

prediction) between two basic blocks must be separately 

handled.  

On the other hand, it can be observed that there exist 

types of operations (not necessarily a single line of code) 

which are present in many different functions written in 

C. Although it is hard to list all possible types of 

operations which can be used in writing C functions it 

can be safely concluded that it is a finite set. And while 

the research discussed in this paper has certainly not 

identified all of them, through careful examination of 

different types of functions it is possible to do so.  

At this point it can be concluded that there exist several 

distinct subsets of these elementary operations that 

accurately reflect the implicit features of a processing 

element architecture: integer and floating point arithmetic 

operations, logic and memory operations. All of these 

operation types are also supported by processor through 

dedicated parts of datapath. Further examination and 

experiments reveal that distinction must also be made 

between operations on local and global variables, and 

operations with arrays. Looped execution of a certain 

type of operation should also be taken into consideration. 

An example of several types of elementary operations is 

illustrated in Figure1. 

Once a large enough set of elementary operations is 

defined, the cost is determined based on execution time 

of these operations for each type of processing element 

by using a simulator or the actual target. The data 

collected is reusable, without any additional 

measurements, for estimating performance of any 

software application task at hand. The granularity of 

elementary operation is large enough to encompass 

pipeline effects. Also, an elementary operation often 

crosses basic block boundaries thus cancelling inter-block 

effects.    

Test benches for measuring elementary operation 

execution times have been carefully devised to include a 

large set of possible operation types.  CHStone [10] had 

been used as a starting point, mostly to identify the 

distinction between integer and floating point arithmetic 

operations, and between simple (e.g. addition, shift) and 

more complex operations (e.g. multiplication, division). 

However, major modifications and improvements have 

been done to better suit the earlier described features of a 

heterogeneous architecture.  

 

B. Elementary operation cost measurement 

Experiments and measurements have been conducted on 

two different RISC processor architectures implemented 

on Xilinx ZedBoard Zynq®-7000 All Programmable 

SoC.  

An ARM Cortex A9 processor was used in the following 

configuration: operating frequency @ 667MHZ, 32 KB 

L1 cache and 512 KB L2 cache with both instructions 

and data stored in local DDR3 SDRAM memory 

operating at 533 MHz.  

MicroBlaze, a softcore processor was used in the 

following architecture configuration: 5-stage pipeline 

 

Figure 1.  Elementary operation examples 
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with hardware multiplier, FPU and barrel shifter @ 200 

MHz (200 MHz clock frequency is the maximum 

achievable frequency on PL side of Zynq system) with 

both the instructions and data stored in local BRAM 

memory. 

In Table 1 an example of elementary operation execution 

times for different types of addition and multiplication 

operation is presented. The distinction is made between 

integer and floating point operations and whether the 

operation is performed in a loop or not.  

Besides using the obtained data for estimating duration of 

a complex task execution on a certain type of processor, 

this data can also be used for quick identification of 

implicit features of processor architecture and datapath. 

For example, Figure 2 illustrates the impact of loop 

unrolling for operations specified in Table 1. It is clearly 

visible that due to the internal architecture, it is much 

more beneficial to do loop unrolling on a MicroBlaze 

processor than on ARM Cortex A9 – speedup of integer 

addition goes up to four times, and floating point 

multiplication almost doubles in performance. 

 

 

IV. EXPERIMENTAL RESULTS 

Several different benchmark sets have been used to test 

the ability to accurately estimate task execution time 

based on elementary operation cost concept: MiBench 

[12], JPEG [13,14] and AES [15]. 

The total of seven benchmarks were used: two 

benchmarks from MiBench set (Cubic and Sqrt), three 

from JPEG set (Shift, DCT and Zig-Zag) and two from 

AES set (SubBytes and ShiftRows).  These particular 

benchmarks have been chosen to test all elementary 

operation subsets. Cubic and Sqrt benchmarks test integer 

and floating point arithmetic operations. Sqrt, Shift, DCT 

and Zig-Zag integer, memory and logic operations, while 

AES benchmarks test memory operations.  

The number of each type of elementary operation 

included in these benchmarks needed for timing 

estimation, has been analysed with the help of a 

previously developed tool [16]. This tool has been further 

improved to enable automation of the process of 

identifying total number of occurrence of each type of 

elementary operation in a given function.  

After the analysis of elementary operations contained 

within each benchmark, timing estimation was calculated 

based on previously obtained operation execution times. 

The results are given in Table 2 under Est. These results 

were compared with the results of real-time execution of 

TABLE I.  ELEMENTARY OPERATION EXECUTION TIMES 

Target processor 

ARM  

Cortex A9 

[ms] 

MicroBlaze 

[ms] 

INT  

ADD 

loop 1,2E-5 1,15E-4 

unrolled loop 9,23E-6 2,93E-5 

INT  

MUL 

loop 1,352E-5 2,9E-4 

unrolled loop 6,9E-6 1,02E-4 

FLOAT  

ADD 

loop 1,35E-5 1,635E-3 

unrolled loop 1,18E-5 1,48E-3 

FLOAT  

MUL 

loop 1,5E-5 1,74E-3 

unrolled loop 1,414E-5 9,83E-4 
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Figure 2.  Loop unrolling speedup comparison 

 

 

 

TABLE II.  COMPARISON OF ESTIMATED AND ACTUAL EXECUTION TIMES 
 

Benchmark 
Cubic 

 

Sqrt 

 

JPEG 

Shift 

 

JPEG 

DCT 

 

JPEG 

Zig-Zag 

 

AES 

SubBytes 

 

AES 

ShiftRows 

 

Target 

ARM  

Cortex A9 

Est. [ms] 4,99E-03 1,77E-03 2,24E-03 1,34E-02 4,03E-03 1,33E-03 5,39E-04 

Act. [ms] 4,76E-03 1,69E-03 2,27E-03 1,54E-02 3,89E-03 1,44E-03 5,16E-04 

Error -4,83% -4,73% 1,32% 12,99% -3,60% 7,64% -4,46% 

MicroBlaze 

Est. [ms] 2,77E-01 9,28E-03 1,35E-02 9,06E-02 1,42E-02 5,44E-02 5,64E-04 

Act. [ms] 2,56E-01 8,74E-03 1,47E-02 9,79E-02 1,38E-02 5,30E-02 5,07E-04 

Error -8,20% -6,18% 8,16% 7,46% -2,90% -2,64% -11,24% 
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the same set of benchmarks on the Zynq platform for 

both target processors. Benchmark execution times on the 

Zynq platform are indicated in the Table 2 under Act.    

 

Comparison of the results, illustrated in Figure 3 shows 

that the average error rate is around six percent with the 

peak at twelve percent. Considering that timing 

estimation is done at very high level of abstraction, these 

results are within acceptable range and also comparable 

to the results of methods presented in related work 

mentioned previously.   

It is important to note that while these experiments were 

conducted on a real physical platform, they could have 

also been conducted, without any modification on an ISS 

or cycle-accurate simulator. In this case the simulator for 

these processors was not available. 

 

V. CONCLUSION 

In this article a novel approach to source-level 

performance estimation has been proposed. The 

elementary operation cost concept enables very fast 

design space exploration with high accuracy of results. 

The average error rate at six percent is comparable to the 

results of methods presented in related work, and thus 

within acceptable limit, especially the performance 

estimation is done in a very early design stage where the 

main goal to detect the most suitable type of processing 

element for a certain type of software application task and 

determine the optimal total number of processing 

elements.  

First steps in future evolution of this approach will be full 

automation of the entire process and providing support 

for evaluation of effects of different memory 

configurations. Further improvements will need to face 

the challenge of handling compiler-introduced 

optimizations. The possibility to use this approach for 

simulation-based software performance evaluation, 

possibly in a transaction-level environment, will also be 

considered.  
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Figure 3.  Estimation error rates 
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