
Performance Estimation in Heterogeneous

MPSoC Based on Elementary Operation Cost

Nikolina Frid, Danko Ivošević and Vlado Sruk

 University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia

nikolina.frid@fer.hr, danko.ivosevic@fer.hr, vlado.sruk@fer.hr

Abstract – Effective use of resources available on

heterogeneous MPSoC platforms can only be achieved

through careful resource allocation and scheduling. The

diversity of processing and memory elements will manifest

itself in the total time and resources required to perform a

task or execute an application. Choosing the right platform

element is the key and the first step is performance

estimation.

This paper tackles the issue of finding the most suitable

processing element for each part of the software application

through a novel approach – elementary operation cost. The

cost of each elementary operation is experimentally

determined through a set of carefully devised benchmarks

and is used for estimating duration of complex functions

found in common applications such as JPEG, AES etc. By

raising the abstraction level on which the execution time is

calculated from instruction to operation level, common

problems in performance estimation such as pipelining and

branch prediction can be avoided and estimation accuracy

is improved. Demonstrated results show that the average

error rate of estimated execution times for various

benchmarks is around six percent compared to the actual

execution times.

Keywords: Embedded Computer Systems, Heterogeneous

Computing, FPGA, Design Space Exploration, Performance

Estimation

I. INTRODUCTION

Heterogeneous multiprocessor systems have continuously

been used in embedded systems for almost a decade due

to their ability to provide better performance at lower

cost, area and power demand. Much work has been done

to achieve, in each new generation of systems, even better

performance at lower cost and design time while

maintaining software flexibility. Exploring large design

space poses the greatest challenge in MPSoC design.

Choosing the right platform architecture which will meet

software application demands in early stages of design

process is the key to reducing development cost and time-

to-market. The widely accepted approach [1] to overcome

this challenge is to start the design space exploration at

high levels of abstraction allowing for fast evaluation of

available options. In early design stages the hardware

platform is still not finished and performance must be

evaluated either through simulation or analytical

methods. This article proposes a novel analytical method

for software performance estimation on heterogeneous

MPSoC platforms based on elementary operation cost

concept. This method ensures high accuracy of results

while maintaining high level of abstraction and thus

enabling fast design space exploration.

II. RELATED WORK

In early days of heterogeneous platforms research and

design, Instruction Set and Cycle-Accurate Simulators

(ISS/CAS) have been invaluable tools for early

performance estimation [2]. However, their high accuracy

came at the cost of long simulation time and large design

effort. More recent work has adopted the TLM [3]

approach which allows much faster functional and

performance (i.e. timing) evaluation with possibility to

even simulate the behaviour of RTOS. While TLM gives

very good results in functional simulation, the issues arise

in achieving high accuracy of timing estimation. Main

challenge is to accurately describe software application

performance on different processing elements and

provide it as an input to TLM. Several different

approaches exist, mostly relying on some form of

application source code annotation and transformation

into SystemC, which is suitable for later use in TLM.

Authors in [5] rely on source level annotation. They all

break down the application structure into Basic Blocks

(mostly using GCC compiler) and use ISS or CAS to

estimate performance for each block. In later stages the

application is simulated (speed comparable to real-time

execution of application) with different inputs, mostly as

a part of a transaction-level model. Rate error remains

under ten percent, in most work around six percent,

within acceptable boundaries.

A slightly different approach is presented in [4]. The

authors introduce annotation at intermediate

representation (IR) level, a lower level of abstraction, in

order to capture compiler optimizations more accurately.

However, all these approaches have trouble with the

inter-block dependency (pipeline effects). The problem is

partially solved by introducing pair-wise execution of

neighbour blocks or simulation of as many possible basic

block combinations at the cost of total simulation time.

A rather different approach is presented in [9], where

authors use analytical estimation instead of simulation.

MIPRO 2016/CTS 1409

This method employs neural networks which receive the

number of each type of instruction of software

application and give the estimation of number of cycles

(i.e. total duration) as output. The results are little less

accurate with around 17 percent average error rate, and

the network training time is a bit longer, but the system is

more flexible and faster in later stages.

III. ELEMENTARY OPERATION CONCEPT

Fast and efficient exploration of the large design space,

present in MPSoC design, requires early performance

estimation, as mentioned earlier. Consequently, the

performance estimation must be conducted at very high

level of abstraction using application and platform

models. It is also very important that this models not only

enable fast execution but also retain a very high degree of

accuracy in performance estimation. Thus it is extremely

important to accurately describe the heterogeneous

platform.

In earlier work regarding the impact of heterogeneity on

MPSoC performance [10] it has been observed that the

performance of a particular type of processing element in

execution of simple tasks (e.g. calculation of square root

of an integer number) highly correlates with the

performance of that same element when executing a more

complex task (e.g. JPEG compression). In this paper that

concept is further elaborated.

A. Concept Overview

Great majority of authors agree that the key to source-

level performance estimation is to identify a unit of code

small enough to enable modular and reusable approach

and in the same time large enough to diminish the

pipeline effects. Assembly level instructions satisfy only

the first condition. Basic blocks, at C source level, are

much more resilient to pipeline effects but their

reusability is often questionable – two different functions

(tasks) almost never have two identical basic blocks.

Thus ISS must be used each time a new function requires

timing estimation. Moreover, pipeline effects (i.e. branch

prediction) between two basic blocks must be separately

handled.

On the other hand, it can be observed that there exist

types of operations (not necessarily a single line of code)

which are present in many different functions written in

C. Although it is hard to list all possible types of

operations which can be used in writing C functions it

can be safely concluded that it is a finite set. And while

the research discussed in this paper has certainly not

identified all of them, through careful examination of

different types of functions it is possible to do so.

At this point it can be concluded that there exist several

distinct subsets of these elementary operations that

accurately reflect the implicit features of a processing

element architecture: integer and floating point arithmetic

operations, logic and memory operations. All of these

operation types are also supported by processor through

dedicated parts of datapath. Further examination and

experiments reveal that distinction must also be made

between operations on local and global variables, and

operations with arrays. Looped execution of a certain

type of operation should also be taken into consideration.

An example of several types of elementary operations is

illustrated in Figure1.

Once a large enough set of elementary operations is

defined, the cost is determined based on execution time

of these operations for each type of processing element

by using a simulator or the actual target. The data

collected is reusable, without any additional

measurements, for estimating performance of any

software application task at hand. The granularity of

elementary operation is large enough to encompass

pipeline effects. Also, an elementary operation often

crosses basic block boundaries thus cancelling inter-block

effects.

Test benches for measuring elementary operation

execution times have been carefully devised to include a

large set of possible operation types. CHStone [10] had

been used as a starting point, mostly to identify the

distinction between integer and floating point arithmetic

operations, and between simple (e.g. addition, shift) and

more complex operations (e.g. multiplication, division).

However, major modifications and improvements have

been done to better suit the earlier described features of a

heterogeneous architecture.

B. Elementary operation cost measurement

Experiments and measurements have been conducted on

two different RISC processor architectures implemented

on Xilinx ZedBoard Zynq®-7000 All Programmable

SoC.

An ARM Cortex A9 processor was used in the following

configuration: operating frequency @ 667MHZ, 32 KB

L1 cache and 512 KB L2 cache with both instructions

and data stored in local DDR3 SDRAM memory

operating at 533 MHz.

MicroBlaze, a softcore processor was used in the

following architecture configuration: 5-stage pipeline

Figure 1. Elementary operation examples

1410 MIPRO 2016/CTS

with hardware multiplier, FPU and barrel shifter @ 200

MHz (200 MHz clock frequency is the maximum

achievable frequency on PL side of Zynq system) with

both the instructions and data stored in local BRAM

memory.

In Table 1 an example of elementary operation execution

times for different types of addition and multiplication

operation is presented. The distinction is made between

integer and floating point operations and whether the

operation is performed in a loop or not.

Besides using the obtained data for estimating duration of

a complex task execution on a certain type of processor,

this data can also be used for quick identification of

implicit features of processor architecture and datapath.

For example, Figure 2 illustrates the impact of loop

unrolling for operations specified in Table 1. It is clearly

visible that due to the internal architecture, it is much

more beneficial to do loop unrolling on a MicroBlaze

processor than on ARM Cortex A9 – speedup of integer

addition goes up to four times, and floating point

multiplication almost doubles in performance.

IV. EXPERIMENTAL RESULTS

Several different benchmark sets have been used to test

the ability to accurately estimate task execution time

based on elementary operation cost concept: MiBench

[12], JPEG [13,14] and AES [15].

The total of seven benchmarks were used: two

benchmarks from MiBench set (Cubic and Sqrt), three

from JPEG set (Shift, DCT and Zig-Zag) and two from

AES set (SubBytes and ShiftRows). These particular

benchmarks have been chosen to test all elementary

operation subsets. Cubic and Sqrt benchmarks test integer

and floating point arithmetic operations. Sqrt, Shift, DCT

and Zig-Zag integer, memory and logic operations, while

AES benchmarks test memory operations.

The number of each type of elementary operation

included in these benchmarks needed for timing

estimation, has been analysed with the help of a

previously developed tool [16]. This tool has been further

improved to enable automation of the process of

identifying total number of occurrence of each type of

elementary operation in a given function.

After the analysis of elementary operations contained

within each benchmark, timing estimation was calculated

based on previously obtained operation execution times.

The results are given in Table 2 under Est. These results

were compared with the results of real-time execution of

TABLE I. ELEMENTARY OPERATION EXECUTION TIMES

Target processor

ARM

Cortex A9

[ms]

MicroBlaze

[ms]

INT

ADD

loop 1,2E-5 1,15E-4

unrolled loop 9,23E-6 2,93E-5

INT

MUL

loop 1,352E-5 2,9E-4

unrolled loop 6,9E-6 1,02E-4

FLOAT

ADD

loop 1,35E-5 1,635E-3

unrolled loop 1,18E-5 1,48E-3

FLOAT

MUL

loop 1,5E-5 1,74E-3

unrolled loop 1,414E-5 9,83E-4

0,00

1,00

2,00

3,00

4,00

5,00

INT ADD INT MUL FLOAT ADD FLOAT MUL

ARM MicroBlaze

Figure 2. Loop unrolling speedup comparison

TABLE II. COMPARISON OF ESTIMATED AND ACTUAL EXECUTION TIMES

Benchmark
Cubic

Sqrt

JPEG

Shift

JPEG

DCT

JPEG

Zig-Zag

AES

SubBytes

AES

ShiftRows

Target

ARM

Cortex A9

Est. [ms] 4,99E-03 1,77E-03 2,24E-03 1,34E-02 4,03E-03 1,33E-03 5,39E-04

Act. [ms] 4,76E-03 1,69E-03 2,27E-03 1,54E-02 3,89E-03 1,44E-03 5,16E-04

Error -4,83% -4,73% 1,32% 12,99% -3,60% 7,64% -4,46%

MicroBlaze

Est. [ms] 2,77E-01 9,28E-03 1,35E-02 9,06E-02 1,42E-02 5,44E-02 5,64E-04

Act. [ms] 2,56E-01 8,74E-03 1,47E-02 9,79E-02 1,38E-02 5,30E-02 5,07E-04

Error -8,20% -6,18% 8,16% 7,46% -2,90% -2,64% -11,24%

MIPRO 2016/CTS 1411

the same set of benchmarks on the Zynq platform for

both target processors. Benchmark execution times on the

Zynq platform are indicated in the Table 2 under Act.

Comparison of the results, illustrated in Figure 3 shows

that the average error rate is around six percent with the

peak at twelve percent. Considering that timing

estimation is done at very high level of abstraction, these

results are within acceptable range and also comparable

to the results of methods presented in related work

mentioned previously.

It is important to note that while these experiments were

conducted on a real physical platform, they could have

also been conducted, without any modification on an ISS

or cycle-accurate simulator. In this case the simulator for

these processors was not available.

V. CONCLUSION

In this article a novel approach to source-level

performance estimation has been proposed. The

elementary operation cost concept enables very fast

design space exploration with high accuracy of results.

The average error rate at six percent is comparable to the

results of methods presented in related work, and thus

within acceptable limit, especially the performance

estimation is done in a very early design stage where the

main goal to detect the most suitable type of processing

element for a certain type of software application task and

determine the optimal total number of processing

elements.

First steps in future evolution of this approach will be full

automation of the entire process and providing support

for evaluation of effects of different memory

configurations. Further improvements will need to face

the challenge of handling compiler-introduced

optimizations. The possibility to use this approach for

simulation-based software performance evaluation,

possibly in a transaction-level environment, will also be

considered.

REFERENCES

[1] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-
Vincentelli, “System-level design: orthogonalization of concerns
and platform-based design,” IEEE Trans. Comput. Des. Integr.
Circuits Syst., vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

[2] L. Cai and D. Gajski, “Transaction level modeling,” in
Proceedings of the 1st IEEE/ACM/IFIP international conference
on Hardware/software codesign & system synthesis -
CODES+ISSS ’03, 2003, p. 19.

[3] S. Abdi, G. Schirner, Y. Hwang, D. D. Gajski, and L. Yu,
“Automatic TLM generation for early validation of multicore
sSystems,” IEEE Des. Test Comput., vol. 28, no. 3, pp. 10–19,
May 2011.

[4] S. Chakravarty, Z. Zhao, and A. Gerstlauer, “Automated,
retargetable back-annotation for host compiled performance and
power modeling,” in 2013 International Conference on
Hardware/Software Codesign and System Synthesis,
CODES+ISSS 2013, 2013, pp. 1–10.

[5] K. L. Lin, C. K. Lo, and R. S. Tsay, “Source-level timing
annotation for fast and accurate TLM computation model
generation,” in Proceedings of the Asia and South Pacific Design
Automation Conference, ASP-DAC, 2010, pp. 235–240.

[6] Z. Wang and J. Henkel, “Accurate source-level simulation of
embedded software with respect to compiler optimizations,” Des.
Autom. & Test Eur. Conf. & Exhib., vol. 0, pp. 382–387, 2012.

[7] E. Cheung, H. Hsieh, and F. Balarin, “Fast and accurate
performance simulation of embedded software for MPSoC,” in
Proceedings of the Asia and South Pacific Design Automation
Conference, ASP-DAC, 2009, pp. 552–557.

[8] P. Gerin, M. M. Hamayun, and F. Pétrot, “Native MPSoC co-
simulation environment for software performance estimation,” in
Proceedings of the 7th IEEE/ACM international conference on
Hardware/software codesign and system synthesis - CODES+ISSS
’09, 2009, p. 403.

[9] M. Oyamada, F. R. Wagner, M. Bonaciu, W. Cesario, and A.
Jerraya, “Software Performance Estimation in MPSoC Design,” in
2007 Asia and South Pacific Design Automation Conference,
2007, pp. 38–43.

[10] N. Frid, D. Ivosevic, and V. Sruk, “Heterogeneity impact on
MPSoC platforms performance,” in 2015 38th International
Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2015, pp. 1071–1076.

[11] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda and Hiroaki
Takada, "Proposal and Quantitative Analysis of the CHStone
Benchmark Program Suite for Practical C-based High-level
Synthesis", Journal of Information Processing, vol. 17, pp.242-
254, 2009.

[12] M. R. Guthaus, J.S. Ringenberg, D. Ernst, et al., “MiBench: A
free, commercially representative embedded benchmark suite”, in
Proceedings of IEEE 4th Annual Workshop on Workload
Characterization”, Austin, TX, 2001., pp. 3-14.

[13] G. K. Wallace, “The JPEG Still Picture Compression Standard”
Communication of the ACM, vol 34., Issue 4, ACM Press, New
York, NY, USA, pp.30-44 , 1991.

[14] Arai Y., Agui T., Nakajima M., “A Fast DCT-sQ Scheme for
Images”, Trans. IEICE, Vol. E71, No.11 pp. 1095-1097, 1988.

[15] NIST, “FIPS 197 Advance Encryption Standard (AES)”,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[16] D. Ivošević and V. Sruk, “Unified flow of custom processor
design and FPGA implementation,” in IEEE EuroCon 2013, 2013,
pp. 1721–1727.

-20%

-15%

-10%

-5%

0%

5%

10%

15%

20%

ARM Cortex A9 MicroBlaze

Figure 3. Estimation error rates

1412 MIPRO 2016/CTS

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

	cts_22_3721

