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Abstract

In this paper we investigate the efficiency of two immunological algorithms (CLONALG and opt-IA) in the evo-
lution of Boolean functions suitable for use in cryptography. Although in its nature a combinatorial problem, we
experiment with two representations of solutions, namely, the bitstring and the floating point based representation.
The immunological algorithms are compared with two commonly used evolutionary algorithms - genetic algorithm
and evolution strategy. To thoroughly investigate these algorithms and representations, we use four different fitness
functions that differ in the number of parameters and difficulty. Our results indicate that for smaller dimensions
immunological algorithms behave comparable with evolutionary algorithms, while for the larger dimensions their
performance is somewhat worse. When considering only immunological algorithms, opt-IA outperforms CLONALG
in most of the experiments. The difference in the representation for those algorithms is also clear where floating point
works better with smaller problem sizes and bitstring representation works better for larger Boolean functions.

Keywords: Atrtificial Immune Systems; Evolutionary algorithms; Boolean functions; Cryptography; Comparison;
Efficiency analysis

1. Introduction

Cryptography, in its core, is a science (and art) of secret writing with the goal of hiding the meaning of a mes-
sage [1]. As such, it plays a tremendous role in people’s everyday life. To ensure the secrecy of information (but
also authentication and data integrity among other relevant goals [2]) we rely on strong, well-designed cryptographic
algorithms —commonly reffered as ciphers.

When the ciphers use keys, we can divide them on the basis whether all communicating parties use the same key
or not [3]. If all entities use the same key for encryption and decryption operations then we talk about symmetric-key
cryptography or secret-key cryptography. Assume that two parties (commonly denoted as Alice and Bob) want to
exchange some message and they want it to remain secret, i.e., that an attacker (commonly denoted as Eve) cannot
read it. Alice could encrypt her message and send it over an insecure (public) channel to Bob. If Bob has the same
key as Alice, he can then decrypt and read the message. Eve cannot decrypt the message if she does not know the key.
Therefore, if Alice and Bob want to keep their communication private they need either to keep the key secret or the
algorithm secret. However, in 19th century Kerchoff stated that a cryptosystem should be secure even if everything
about the system, except the key, is publicly known [4]. A classical division of symmetric-key cryptography is on
block ciphers and stream ciphers [3]. A common trait for all those ciphers is that they are designed in accordance
with a number of cryptographic criteria they need to fulfill. Those criteria enable ciphers to resist various cryptanalysis
attacks where to resist linear [5] cryptanalysis, we require that the cipher possess enough nonlinearity.

In both block and stream ciphers one common source of nonlinearity (although not the only one) are Boolean
functions. In block ciphers, one usually uses vectorial Boolean functions or Substitution boxes (S-boxes) [3] where
input and output dimensions are comparable (e.g. the same as in the AES cipher [6] or similar like in the DES
cipher [7]). On the other hand, in stream ciphers more common are either Boolean functions or S-boxes where output
dimension is strictly smaller than the input dimension [8].

To build such nonlinear elements, one has three main options on his disposal: algebraic constructions, random
search, and heuristics [9]. Heuristic techniques are well visited with works spanning from simulated annealing [10]
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Table 1: The search space size for various input size n.

n 6 8 10 12 14 16
#0264 9256 91024 54096 516384 765536

and evolutionary algorithms [11], to particle swarm optimization [12]. All those methods have in common that they
are highly successful and give results comparable to algebraic constructions.

In the rest of this paper, we concentrate only on Boolean functions, i.e., where the output dimension of a function
equals one. As the construction principle, we use heuristics, more precisely immunological inspired computation
where we experiment with the Clonal Selection Algorithm and the optimization Immune Algorithm. Both algorithms
are a special class of Immune Algorithms and are inspired by the clonal selection principle of the human immune sys-
tem [13, 14]. From the evolutionary algorithms paradigm, we experiment with genetic algorithms (GAs) and evolution
strategies (ES). We note that this work presents the first step when investigating the effectiveness of immunological
algorithms for the construction of Boolean functions with good cryptographic properties. By doing so, we explore
two different representations of solutions, namely the bitstring and the floating point representation and compare the
aforesaid algorithms. As a benchmark suite, we use four fitness functions and a number of Boolean function sizes.

1.1. Motivation and Contributions

Historically, Boolean functions were mostly used in combination with Linear Feedback Shift Registers (LFSRs)
in two models — the filter generator and the combiner generator. In a filter generator, the output is obtained by a
nonlinear combination of a number of positions in one longer LFSR while in a combiner generator, several LFSRs
are used in parallel and their output is the input for a Boolean function. Such Boolean functions need to fulfill a
number of properties: to be balanced, with high nonlinearity, large algebraic degree, large algebraic immunity, large
fast algebraic immunity, and large correlation immunity (in the case of combiner generators) [15]. However, obtaining
large enough Boolean functions with good values of the aforesaid properties is not a trivial task. First, to illustrate the
size of the problem, we give the corresponding search space sizes in Table 1.

However, in our experiments we concentrate only on two properties out of those listed above - balancedness
and nonlinearity. By doing so, we are able to concentrate more on the comparison between different heuristic tech-
niques as well as with related work. Therefore, although talking about constructing Boolean functions with good
cryptographic properties, we emphasize that here we consider these problems as benchmarks where the end goal
are Boolean functions possessing certain properties. Such obtained functions could, but will not in general, have all
necessary properties of a sufficient quality.

In this paper, we give two main contributions and a number of smaller ones. The first contribution represents
an experimental investigation on the efficiency of immunological algorithms when designing Boolean functions with
good cryptographic properties. Although a simple application of a new algorithm to a well-researched problem does
not necessarily constitute a significant contribution, we believe here to be relevant since the whole area of applying
immunological algorithms to cryptography is a new one. Moreover, by switching the paradigm from evolutionary al-
gorithms to immunological algorithms we should be able to give an insight whether further improvements are possible
by simply changing the algorithms. Indeed, by doing so, we try to give knowledge that is not domain specific and tells
us whether for performance increase is more important the choice of algorithm, representation, or fitness function.
The second contribution is that we are the first, as far as we know, to experiment with the floating point representation
of solutions to evolve cryptographic Boolean functions. Finally, in this work we investigate larger sizes of Boolean
functions than can usually be found in the literature, where we go up to Boolean functions with 16 variables. We note
that by doing so, we experiment with sizes that have practical importance since 13 inputs is considered the minimal
size of a Boolean function to be useful in cryptography [15]. To strengthen our experimental results, we compare
two immunological algorithms with two well-researched evolutionary algorithms for both bitstring and floating point
representation. Naturally, in order to examine the relevance of algorithms’ parameters, we conduct a detailed tun-
ing phase. Finally, all experiments are conducted on four fitness functions where two are well-known ones from the
literature, and two are modifications that provide more gradient in the search process.



1.2. Outline of the Paper

This paper is divided into two main parts: the description of our experimental setup in Section 5, and the obtained
results in Section 6. However, first we start with a short introduction to Boolean functions, their properties, represen-
tations, and notation we use in Section 2. Then, after we introduced the readers with basic notions and properties, we
give a selection or relevant works in Section 3. Next, Section 4 introduces fitness functions we use in our experiments.
Detailed explanation about the representation perspectives for heuristic algorithms is presented in Section 5.1. The
parameter tuning phase is discussed in Section 6.1 and the results for the first and second fitness functions in Sec-
tions 6.2 and 6.3, respectively. In Section 6.4, we give a short discussion about the efficiency of the algorithms used
as well as some potential future research directions. Finally, we conclude in Section 7.

2. Boolean Functions Properties and Representations

Let n,m € N. We denote the set of all n-tuples of the elements in the field [F, as [;, where [, is the Galois field
with two elements. The set I} represents all binary vectors of length » and it can be viewed as a IF,-vectorspace [15].

The inner product of vectors @ and b is denoted as @ - b and it equals a - b= @ a;b;. Here, “®” represents addition
modulo two. The Hamming weight (HW) of a vector d@, where @ € 7, is the number of non-zero positions in the
vector. An (n, m)-function is any mapping F from F to 7' where Boolean functions represent m = 1 case.

2.1. Boolean Function Representations

A Boolean function f on ] can be uniquely represented by a truth table (TT), which is a vector ( f(@), s f(f))
that contains the function values of f, ordered lexicographically [15].

The second unique representation of a Boolean function is the Walsh-Hadamard transform W, that measures the
correlation between (%) and all linear functions @- ¥ [15, 16]. The Walsh-Hadamard transform of a Boolean function
f equals:

Wi@ = ) (-1, (M
XelF}
There exist other unique representations of Boolean functions like the algebraic normal form or numerical normal

form [15]. However, since we do not work with those representations nor we need properties that are usually derived
from those representations, we omit the details and refer interested readers to [15].

2.2. Boolean Function Properties and Bounds

A Boolean function f is balanced if the Walsh-Hadamard spectrum of a vector 0 equals zero [17]:
W (0) = 0. ()

Alternatively, in the truth table representation, a Boolean function with # inputs is balanced if its Hamming weight
equals 2"71.

A Boolean function should lie at a large Hamming distance (HD) from all affine functions and the nonlinearity Ny
of a Boolean function f is the minimum HD between the function f and affine functions [15]. The nonlinearity N
of a Boolean function f expressed in terms of the Walsh-Hadamard coefficients equals [15]:

o4 1
Ny = 2" = Smaxae W@ 3)
The Parseval’s relation equals:
D Wiy =27, )
aelF}

and it implies that the mean of Wf(a)2 equals 2", and MaX ey |Wy(a)| is then at least equal to the square root of this
mean.



From Eq. (4), it follows that the maximal value of the Walsh-Hadamard spectrum equals at least 2"/? which occurs
in the case of bent Boolean functions. These bent functions can have only even number of variables and are never
balanced. After presenting the general expression for nonlinearity in Eq. (3), we give the equation for nonlinearity of
bent functions: [18, 19]:

Np=2""1-2271, ®)

Since the values of bent functions are not uniformly distributed, they are not appropriate for direct usage in
cryptography. However, it is possible to use bent functions in secondary constructions that result in balanced Boolean
functions with high nonlinearity [15].

Before proceeding to examine balanced Boolean functions, we pause in an effort to provide an insight on the
number of bent Boolean functions, which directly translates to the difficulty of the problem of obtaining bent functions.
In general, there is no known efficient bounds for an n-variable Boolean function. A naive upper bound equals [15]:

upper_bound = 22" +2G), ©

and the lower bound is:
+logy (n-2)-1

lowwer_bound = 2%’ . 7
From the previous expressions, we can deduce that the number of bent functions is huge, but still only a tiny
fraction of the whole search area.
Sarkar and Maitra showed that if a Boolean function f has the correlation immunity property of order ¢, an even
number of inputs 7, and k < 5 — 1 then its nonlinearity Ny has an upper bound as follows [20]:

Np<2mt o327t ok (8)

where k equals ¢ + 1 if f is balanced or has Hamming weight divisible by 2/*! and k equals ¢ otherwise.
In the case when k > 4 — 1 then the nonlinearity property has the upper bound:

Ny <2mt -2k 9)

There exist more strict bounds, but the one presented here is sufficient for our purposes [15]. For an in-depth
treatment of properties of Boolean functions as well as their applications in cryptography, we refer interested readers
to [15, 21].

3. Related Work

As already mentioned in Section 1, there are many successful applications of heuristics techniques when con-
structing Boolean functions usable in cryptography. However, as far as the authors are aware, there are no examples
in the literature that involve immunological algorithms and the design of cryptographic Boolean functions. There-
fore, in this section we enumerate a subset of works that we consider relevant for this topic, where we investigate the
representation and algorithmic perspectives.

When discussing representations, note there are two perspectives; one encompassing representations of Boolean
functions and the second one dealing with the genotype representations in optimization algorithms. However, as it
will be seen, there exist a certain correlation between those two perspectives.

When considering the truth table representation of Boolean functions, it is easy to see that the bitstring genotype
representation lends itself naturally for this task. The first paper, as far as the authors know, that explores the evolution
of Boolean functions for cryptography is by Millan et al. [22] where the authors try to evolve Boolean functions
with high nonlinearity. Millan, Clark, and Dawson further increase the strength of genetic algorithms by combining
them with the hill climbing and a resetting step with a goal to find highly nonlinear Boolean functions of up to 12
variables [23].

Clark and Jacob experiment with two-stage optimization to generate Boolean functions with high nonlinearity
and low autocorrelation [10]. They use a combination of simulated annealing and hill climbing with a cost function
motivated by the Parseval’s theorem.



Aguirre et al. use a multi-objective random bit climber to search for balanced Boolean functions of size up to
eight inputs that have high nonlinearity [24]. Their results indicate that the multi-objective approach is highly efficient
when generating Boolean functions that have high nonlinearity.

McLaughlin and Clark experiment with simulated annealing to generate Boolean functions that have optimal
values of a number of properties, namely, algebraic immunity, fast algebraic resistance, and algebraic degree [25]. In
their work, they experiment with Boolean functions with sizes of up to 16 inputs.

Next, there exists a number of papers that uses the truth table representation of Boolean functions, but with the
genotype different from the bitstring representation. Picek, Jakobovic, and Golub experiment with genetic algorithms
and genetic programming to find Boolean functions that possess several optimal properties [26]. Here, the evolved
tree (genotype) is a posteriori transformed to the truth table representation for the evaluation purposes.

Hrbacek and Dvorak use Cartesian genetic programming to evolve bent Boolean functions of sizes up to 16 inputs
where the authors experiment with several configurations of algorithms in order to speed up the evolution process [27].
There, the authors do not limit the number of generations and therefore they succeed in finding bent function in each
run for sizes between 6 and 16 variables.

Picek et al. compare the effectiveness of Cartesian genetic programming and genetic programming when looking
for highly nonlinear balanced Boolean functions with eight inputs [11]. In this work, the authors show that Cartesian
genetic programming performs favorably when compared with some other evolutionary approaches when evolving
cryptography relevant Boolean functions. Picek et al. investigate several evolutionary algorithms in order to evolve
Boolean functions with different values of the correlation immunity property. In the same paper, the authors also dis-
cuss the problem of finding correlation-immune functions with minimal Hamming weight where they experiment with
Boolean functions that have eight inputs [28]. Picek et al. investigate a number of different evolutionary algorithms
and fitness functions for Boolean functions of 8 inputs [29]. They show that genetic programming and Cartesian
genetic programming outperform genetic algorithms and evolution strategies in a number of relevant test scenarios.
Next, Picek et al. investigate evolution of balanced Boolean functions of up to 16 inputs fulfilling a number of cryp-
tographic properties as well as the evolution of minimal Hamming weight and different correlation immunity order
Boolean functions [30]. Finally, Picek and Jakobovic use genetic programming to evolve algebraic constructions that
are then used to construct bent Boolean functions [31].

Stepping away from the truth table representation, there are several works that consider the Walsh-Hadamard
spectrum representation. There, the genotype representation is a list of integer values. Clark et al. experiment with
simulated annealing in order to design Boolean functions using spectral inversion [32]. They observe that many
cryptographic properties of interest are defined in terms of the Walsh-Hadamard transform values. Therefore, they
work in the spectral domain where on the basis of Parseval’s theorem one can infer what values could be in a Walsh-
Hadamard spectrum (note it is not possible to know the positions where those values should be). Therefore, when
generating a Walsh-Hadamard spectrum a necessary step is to make an inverse transform to verify that the spectrum
indeed maps to a Boolean function.

Mariot and Leporati use Particle Swarm Optimization (PSO) to find Boolean functions with good trade-offs of
cryptographic properties for dimensions up to 12 inputs [12]. The same authors use genetic algorithm where the
genotype consists of the Walsh-Hadamard values in order to evolve semibent (plateaued) Boolean functions [33].
Plateaued functions have only three values in the Walsh-Hadamard spectrum and therefore represent somewhat easier
task to evolve when working with the Walsh-Hadamard representation than in the case when considering balanced
Boolean functions.

4. Fitness Functions

In this section, we present the used fitness functions that represent relevant objectives in the Boolean function
design. In total, there are four fitness functions, two following established lines of work and two that represent our
modifications that we consider to be more powerful and providing more gradient in the search. We denote those
functions as the fitness one and the modified fitness one, and the fitness two and the modified fitness two.

4.1. Fitness Function One
The first fitness function concerns the objective of finding bent Boolean functions, i.e. Boolean functions with the
maximal nonlinearity. Here, we start with the simplest fitness function that has only one parameter - the nonlinearity
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Table 2: The nonlinearity of bent functions.

n 6 8 10 12 14 16
Ny 28 120 496 2016 8128 32640

property. To construct bent Boolean functions we use the following fitness where the goal is maximization:
fitness; = Ny. (10)

As already stated, bent Boolean functions exist only for even number of variables and the maximal obtainable
nonlinearity for each size we examine is given in Table 2.

One can observe that here we use a fitness function that does not provide a lot of gradient information. This is
apparent since we look for the nonlinearity value only on a basis of the worst Walsh-Hadamard coefficient and we
simply disregard the rest of the values in the spectrum. In other words, two Boolean functions that have a Hamming
distance equal to one can have either the same nonlinearity, or a difference of a two in the nonlinearity value. However,
since we calculate the nonlinearity property via the Walsh-Hadamard transformation, every change in the truth table
representation can change a significant number of values in the spectrum. Unfortunately, that information is not visible
with the current fitness function.

4.2. Modified Fitness Function One

In order to increase the strength of our fitness function, we present a modified version that considers the whole
Walsh-Hadamard spectrum. Since we know that bent Boolean functions have flat Walsh-Hadamard spectrum with a
value equal to 2"/2, we can use that information to lead our search:

Count,spectrum,values
on-1 ’

fitnessig = Ny + (11)
where count_spectrum_values equals the number of occurrences where the Walsh-Hadamard value is 2"/2. Fur-
thermore, we normalize this value to a range [0, 2] by dividing it by a value of 2"~'. By doing so, we ensure that the
second part of the fitness function has a smaller weight than the minimal improvement of the nonlinearity value (since
as we stated the minimal step in N, equals two).
We note one could calculate the nonlinearity differently where one can use the following cost function [34]:

cost(f) = ) || W@ - x|, (12)

where X and R are real valued parameters. Although we acknowledge that using the above function can result in
improvements of results, we believe that the cost of two more additional parameters that need to be tuned is too great.
This is especially evident in a setting like ours where we work with many different sizes of Boolean functions. We
note that as far as we are aware, there is no straightforward way to choose those parameters nor some obvious scaling
rule between parameter values and the Boolean function size.

4.3. Fitness Function Two

In the second experiment, we search for a balanced function with the maximum possible nonlinearity and conse-
quently correlation immunity equal to zero. We use the following fitness function where the objective is maximization:

fitness, = BAL + Ny. (13)

The balancedness property (BAL) we use as a penalty parameter. As evident from the Algorithm 1, when the
function is balanced, it receives a value (reward) of one, while imbalanced functions get a penalty proportional to
their imbalancedness.

We experimented with several variants for imbalancedness penalty, but the results show similar performance as
long as the penalty is calculated gradually. Note that Eq. (13) may also be restated as a two-stage fitness function.
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Algorithm 1 Calculate balancedness (BAL)

ones = HW (TT)
zeros = 2" - ones
if zeros == ones then
return 1
else
return |ones — zeros|
end if

Table 3: The maximal nonlinearity of balanced functions.

n 6 8 10 12 14 16
Ny 26 118 494 2014 8126 32638

In that configuration, only the balancedness is tested at first, and nonlinearity value is added only if the function is
balanced. In Table 3, we give maximal obtainable values for nonlinearity of balanced Boolean functions.

Finally, since we stated that we look for Boolean functions that have correlation immunity equal to zero, one could
ask why not to include that information in the fitness function. We opted not to follow that line of research since we
believe it would serve as an additional constraint on the search that could result in inability to visit certain parts of the
search space.

4.4. Modified Fitness Function Two

Similarly as with the first fitness function, in Eq. (13) we use only the worst value of the Walsh-Hadamard spectrum
to calculate nonlinearity. Again, that can be remedied with a simple modification of the fitness function:

2" — count_spectrum_values
T . (14)

Here, count_spectrum_values equals the number of times that the maximal Walsh-Hadamard value occurs. Since
the goal is maximization of the nonlinearity property and the lower the number of such maximal values the better, we
subtract it from the value 2" (the total number of values in the Walsh-Hadamard spectrum). Finally, we normalize this
expression by dividing it with 2"~ as in the modified fitness function one.

fitnessoy = BAL + Ny +

5. Experimental Setup

In this section, we give details about experimental setup for each of the algorithms as well as the common param-
eters. For each of the algorithms we conduct a two parameter sweep in order to investigate the best combination of
parameters. Since there are more than two parameters for every algorithm, we try to look only at the most obvious
choices for tuning.

5.1. Representations

For all algorithms, we experiment with two different representations for encoding a Boolean function: bitstring
and floating point representation.

As a Boolean function can be represented with a truth table, which is actually a sequence of bits, the bitstring
genotype comes naturally as one possible representation that can be easily used without need for transformations. It is
important to notice that even though the usage of a bitstring genotype is a natural choice, it can become problematic to
use such a representation due to the genotype size exponentially depending upon the number of variables of a Boolean
function. In other words, for a problem with a Boolean function with » variables, the corresponding bitstring genotype
must be of size 2" to completely cover the solution search space. As shown in Table 1, for larger values of n the search
space and therefore the bitstring size becomes of noticeable and problematic dimensions.



The second approach used for representing Boolean functions is the floating point genotype, defined as a vector of
continuous variables. With this representation one needs to define the translation of a vector of floating point numbers
into the corresponding truth table (binary values). The idea behind this translation is that each continuous variable (a
real number) of the floating point genotype represents a subsequence of bits from the truth table.

All the real values in the floating point vector are constrained to the interval [0, 1]. As mentioned, the number of
elements of a truth table is 2", where n is the number of Boolean variables. The number of bits represented by a single
continuous variable of the floating point vector can vary, and is defined as:

n

decode_by = (15)

dimension’

where the parameter dimension denotes the floating point vector size (number of real values). This parameter can
be modified, as long as the size of the truth table is divisible with this value (i.e. each floating point number represents
the same number of bits). The first step of the translation is to convert each floating point number to an integer value.
Since each real value must represent decode_by bits, the size of the integer interval is given as:

1

interval = W (16)

To obtain a distinct integer value for a given real number, every element d; of the floating point vector is divided
by the calculated interval size, generating a sequence of integer values:

int_value; = { - d J . (17)
interval

The second translation step consists of decoding the integer values to a binary sequence that can finally be used for
evaluation. For this purpose we experiment with two coding systems - binary and Gray coding, and further evaluate
their influence.

As an example, consider a Boolean function of 3 variables, with the truth table of 8 bits. Suppose we want to
represent the function with 4 real values; in this case, each real value encodes 2 bits from the truth table. A string
of two bits may have 4 distinct combinations, therefore a single real value must be decoded into an integer value
from O to 3. Since each real value is constrained to [0, 1], the corresponding integer value is obtained by dividing
the real value with 272 = 0.25 and truncating to nearest smaller integer. Finally, the integer values are translated into
the sequence of bits they encode, using either binary or Gray encoding scheme. Following the above parameters, a
floating point vector [0.71,0.93,0.13, 0.48] would be decoded into the integer vector [2, 3,0, 1], which translates into
the truth table “10110001” using the standard binary encoding.

5.2. Clonal Selection Algorithm

In this paper, we use the Clonal Selection Algorithm (CLONALG) version for optimization tasks proposed by de
Castro and Von Zuben in [35]. A fixed population size of 50 is used in all experiments. For the cloning phase all
antibodies (problem solutions) are chosen and the number of clones for each antibody is selected proportionally to its
fitness resulting in a total number of clones defined by [35]:

n

Ne = Z round(ﬁ;,”), (18)
i=1 !
where we experiment with 8 values of 2, 4, 6, and 8 for each fitness function. In general, an inversely proportional
hypermutation is used in the mutation phase. As two different representations are used (recall Section 5.1), a genotype
dependent hypermutation is applied.
For the floating point representation the number of mutated values M (mutation intensity) is selected by:

1
M=1- T (c - dimension) + (c - dimension), 19)

where £ is the index of a specific antibody in the population generated in the selection phase (assuming the population
is sorted by fitness), c is the mutation parameter set to a value of 0.2 and dimension is the floating point dimension
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(number of distinct values). Note that the given expression corresponds to the formula used for calculating the number
of clones for each antibody resulting in the same value M for each clone of a specific antibody. After M is calculated,
the current clone is mutated by adding a randomly generated number in selected bounds to a randomly selected
element of the floating point vector.

For the bit string representation a similar approach was used. The mutation intensity value M is calculated by:

M=0+1-p-(1-e7)), (20)

where [ is the bit string length, r is the rank of the clone to be mutated in the current population and p is the mutation
parameter. It is worth noting that p directly affects the mutation intensity. Therefore p is varied in experiments by
the values of 0.2, 0.4, 0.6, and 0.8. The number of newly generated antibodies in each generation is set to 5. Elitism
is achieved by never mutating the first clone of the best antibody in the given population. For additional information
about the CLONALG algorithm, we refer interested readers to [36].

5.3. Optimization Immune Algorithm

Alongside CLONALG, we additionally use the optimization Immune Algorithm (opt-IA) [37] with elitism. As
before, a constant population size of 50 antibodies is chosen. The number of clones for each antibody is set to 5. A
static pure aging strategy is used for which we experiment with 75 values of 5, 10, 15, and 20. The mutation rate
is set to the value of 0.2. Because of the two representations used (Sec. 5.1), specific mutation operators are applied
accordingly. For the floating point representation the same hypermutation is used as for CLONALG, while for the
bitstring representation a hypermacromutation is used for which the mutation intensity is independent from the fitness
value, but partially depends on the mutation rate. It is executed by first randomly choosing two indexes i and j such
that 0 < i < j < [ where [ is the bitstring length, and secondly flipping the value of the bits from index i to j in the bit
string with probability c. In experiments the values of 0.2, 0.4, 0.6 and 0.8 are used for the parameter c. For additional
information about opt-IA algorithm, we refer readers to [38].

5.4. Genetic Algorithm

With the genetic algorithms (GAs), we use the k-tournament steady-state selection [39] as given in Algorithm 2
(with k = 3), since this selection avoids the need to use the crossover probability parameter.

Algorithm 2 Steady-state tournament selection

randomly select k individuals;

remove the worst of k individuals;

child = crossover (best two of the tournament);

perform mutation on child, with given individual mutation probability;
insert child into population;

Mutation is selected uniformly at random between a simple mutation, where a single bit is inverted, and a mixed
mutation, which shuffles the bits in a randomly selected subset. The crossover operators are one-point and uniform
crossover, performed at random for each new offspring. For each of the fitness functions we experiment with pop-
ulation sizes of 50, 100, 200, and 300 and individual mutation probabilities of 0.3, 0.5, and 0.7. It is important to
note that we use the mutation probability to select whether an individual would be mutated or not, and the mutation
operator is executed only once on a given individual; e.g. if the mutation probability is 0.7, then on average 7 out of
every 10 new individuals will be mutated (see Algorithm 2), and one mutation will be performed on that individual.
For further information about GAs, we refer to [39, 40].

5.5. Evolution Strategy

When experimenting with evolution strategy (ES) we use (1 + 4)-ES. In this algorithm, in each generation, parents
compete with offspring and from their joint set y fittest individuals are kept. In our experiments offspring population
size A has values of 5, 10, and 20. Parent population size u has values of 50, 100, and 200. For further information on
ES, we refer interested readers to [41, 42, 43].



5.6. Common Parameters

In all the experiments the number of independent trials M for each configuration is 50 and the stopping criterion
for all algorithms is 500 000 evaluations. We decided to work with “only” 500 000 evaluations in an effort to make
the comparison with a number of related works easier [11, 28].

6. Results

In this section we present the results separately for the first objective (using fitness functions 1 and 1A) and the
second objective (with fitness functions 2 and 2A4), preceded with the tuning phase for all the algorithms.

6.1. Parameter optimization

Since the number of possible combinations is prevailing, we perform the tuning phase only with fitness function
2A as in Eq. (14), because it offers a greater diversity in the resulting values. Once optimized, the same parameters
are applied to all the fitness variants. The tuning procedure was performed starting with an initial parameter set for
each algorithm.

For each observed parameter value, 30 independent runs were performed and 30 best solutions were recorded (a
separate set for each parameter value). The choice of the best value for a given parameter was made based on the
median values of the recorded sets, where the parameter value producing the set with the best (highest) median was
selected. It is important to note that in many cases there were no significant statistical differences between the sets,
but we based our choice on the median measure in any case. We performed the tuning experiments for all dimensions
of Boolean functions, but a number of combinations did not yield any significant statistical difference. In Table 4, we
present results for tuning phase for Boolean functions with 8 and 12 inputs. We note that for every Boolean function
size we found the best set of parameters and we applied those parameters for all 4 fitness functions.

Before presenting the results for fitness functions, we note here several questions we are interested in:

e what is the efficiency of the immunological algorithms considering the increasing number of Boolean variables;
e how does the choice of the fitness function influences the results;

e what representation produces better results for which algorithm.

For every algorithm, Boolean function size and fitness function we run 50 independent runs and we report maximal
obtained results over all runs. When presenting results in boxplot charts, we use letters _b to the denote bitstring
encoding and _f to denote the floating point encoding.

6.2. The first objective

Recall that here the goal is to find bent Boolean functions. After the parameter optimization, all the algorithms
are compared by conducting the same number of independent runs with fitness functions 1 and 1A. Figures la to 1f
show the efficiency of the algorithms for the first fitness function as given in Eq. (10) with both the floating point
and the bitstring representation. From the results we observe that for smallest size of Boolean function (6 inputs), all
algorithms manage to find the global optimum. However, only CLONALG with the bitstring representation manages
to find global optimum in all runs. This size is also the only one where algorithms succeed in finding global optimum.
When evaluating the results for Boolean functions with 8 inputs, we see that all but GA with floating point encoding
always reach 114 value.

For Boolean function sizes between 10 and 14 inputs we see that generally speaking GA and ES outperform
CLONALG and opt-IA algorithms. Furthermore, the difference between CLONALG and opt-IA algorithms is quite
visible where opt-IA algorithm outperforms CLONALG. Finally, when considering Boolean functions with 16 inputs,
the worst performing algorithms are CLONALG and opt-IA with floating point representation. It is hard to estimate
the differences among other algorithms, but we note that the best found value equals 32363 which is obtained with
ES with floating point representation.

10



Table 4: Results of the parameter optimization phase

Boolean variables 12
Parameter name Initial value Optimized value Initial value Optimized value
CLONALG / floating point
FP vector size 8, 16, 32, 128, 256 256 32, 64, 128, 256, 512, 1024, 2048, 4096 4096
coding Gray, binary Gray Gray, binary Gray
opt-1A / floating point
FP vector size 8, 16, 32, 64, 128, 256 64 32, 64, 128, 256, 1024, 2048, 4096 4096
coding Gray, binary Gray Gray, binary Gray
GA / floating point
FP vector size 8,16, 32, 128, 256 128 32, 64, 128, 256, 2048, 4096 2048
coding Gray, binary Gray Gray, binary Gray
ES / floating point
FP vector size 32, 64, 128, 256 32 256, 512, 1024, 2048, 4096 256
A 5,10, 20 20 5,10, 20 10
CLONALG/ bitstring
B 2,4.6,8 6 2,4,6,8 8
P 0.2,0.4,0.6,0.8 0.2 0.2,0.4,0.6,0.8 0.2
opt-IA / bitstring
Tg 5,10, 15,20 20 5,10, 15,20 20
c 0.2,0.4,0.6,0.8 0.6 0.2,0.4,0.6,0.8 0.2
GA / bitstring
population size 50, 100, 200, 300 50 50, 100, 200, 300 300
mutation rate 0.3,0.5,0.7 0.7 0.3,0.5,0.7 0.7
ES / bitstring
7 50, 100, 200 200 50, 100, 200 200
pl 5, 10,20 5 5, 10,20 5
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Figure 1: Boxplot results for all algorithms and Boolean function sizes, fitness function 1.

Next, in Figures 2a to 2f, we give results for fitness function denoted as 1A. Recall, here we add reward propor-
tional to the number of times the Walsh-Hadamard spectrum has the maximal value and the maximal fitness value for
6 inputs equals 30. Again as for the fitness function 1, we see that the global optimum value is obtained only for the
smallest Boolean function size. The results for larger sizes are similar as for the previous fitness function.

However, after analyzing the results we observe that the number of required Walsh-Hadamard coeflicients im-
proves over time which points us that for this more complicated fitness function we need more evaluations than for
the fitness function 1. The starkest difference in algorithms’ efficiency for fitness functions 1 and 1A can be observed
for Boolean functions with 16 inputs where the fitness 1A gives much better results than fitness function 1. As in the
fitness function 1, opt-IA outperforms CLONALG.

To conclude, we see that the efficiency of all algorithms quickly deteriorates with the increase of the problem
size which points us that larger dimensions would require more than 500 000 evaluations. The differences between
the clonal selection algorithms and the evolutionary algorithms are generally speaking small, but with an advantage
for evolutionary algorithms. Finally, we can observe there is a clear benefit when adding the extra parameter (the
evaluation of the whole Walsh-Hadamard spectrum) into the fitness functions.
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Figure 2: Boxplot results for all algorithms and Boolean function sizes, fitness function 1A.

6.3. The second objective

The goal of the second objective is to find balanced Boolean functions with as high as possible nonlinearity. In
Figures 3a to 3f, we give results for fitness function 2. As in the first objective, the smallest Boolean function size
does not represent a difficult problem since all algorithms succeed in reaching the global optimum value. For Boolean
functions with 8 inputs we observe that the best performing algorithm is opt-IA where it is important to note that
the best obtained value equals 116 which also represents the best currently known nonlinearity value for balanced
Boolean functions with 8 inputs. For all larger sizes (i.e. sizes larger than 8 inputs), genetic algorithm with the
bitstring representation outperforms all other algorithms. When considering only the clonal selection algorithms, we
see that opt-IA outperforms CLONALG. Furthermore, we observe that opt-IA with bitstring encoding works better
for larger dimensions while opt-IA with the floating point encoding works better for smaller Boolean function sizes.
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Figure 3: Boxplot results for all algorithms and Boolean function sizes, fitness function 2.

Finally, in Figures 4a to 4f, we give results for fitness function 2A. In this set of experiments, for smaller sizes the
best performing algorithm is the GA with the bitstring encoding. For larger sizes the ES with the bitstring encoding
gives the best results. Unfortunately, it seems that the clonal selection algorithms benefit less from the extra infor-
mation in the fitness function when compared with the evolutionary algorithms. However, that does not mean that
information is wasted, only that the clonal selection algorithms require more evaluations to converge.

14



275 — - — "7s e J— §

117.0

1165

116.0 — _ — J—

Fitness value
Fitness value

115.5

115.0

1145

—— 1140 o o o — o o

CLONALG b CLONALG_f  optlAb optiA_f GAb GAf ES b ES_f CLONALG b CLONALG_f  optlA b optlA_f GAb GAf ES b Es_f

(a) Boolean functions with 6 inputs. (b) Boolean functions with 8 inputs.

&

o J—

1975

1970 -

478 ° ) h ‘ 188 . -

417

|

&

Fitness value
5

Fitness value

476 1960

CLONALG b CLONALG_f  optlA b optiA_f GAb GAf ES b Es_f CLONALG b CLONALG_f  optiAb optiA_f GAb GAf ES b Es_f

(c) Boolean functions with 10 inputs. (d) Boolean functions with 12 inputs.

8020
32360

3 i: : e - El
8010 - T . 32340 .

8005 32330 E
8000 H E 32320 -
- I : T e 3

8015

Fitness value
Fitness value

795 . - -
- 32300 -
7990
CLOVALG b CLONALGY oAb opAf  GA® At = B CLONALG b CLONALGY oAb opAf  GA® At = B
(e) Boolean functions with 14 inputs. (f) Boolean functions with 16 inputs.

Figure 4: Boxplot results for all algorithms and Boolean function sizes, fitness function 2A.

6.4. Discussion and Future Work

In this section, we try to give some general remarks regarding the experiments conducted. The first conclusion
we can reach is that the truth table representation of Boolean functions performs worse when compared with the
tree or graph representation as used in [29]. The authors there report similar results for fitness functions 1 and 2
as we obtain here. Since we now experiment with a completely different paradigm (clonal selection algorithms), a
natural conclusion is that the difficulty of these problems lies in the Boolean function representation and not in the
choice of the optimization algorithm. Since there is apparent connection between the truth table representation and
the bitstring representation, it is hard to expect significant breakthroughs without the shift from the currently used
truth table Boolean function representation. Therefore, as a future research direction we see the investigation of other
unique Boolean function representations like the algebraic normal form or the numerical normal form [15]. With those
representations, one can continue working with the bitstring encoding, but can also change far more straightforwardly
to the floating point encoding.

Next, here we work with 500000 evaluations in an effort to make the comparison with related works as easy as
possible. However, our findings show that the clonal selection algorithms would benefit from more evaluations which
therefore represents one apparent future research direction. To further investigate the convergence properties, we
display the rate of convergence for the opt-IA algorithm for Boolean function with 12 inputs and fitness 2A. Figure 5
shows the values of best population individuals over all 50 independent runs. We can observe that the algorithm
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converges before the evaluation limit, which indicates that there would be little progress with a larger number of
evaluations.
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Figure 5: Convergence graph, opt-IA, fitness function 2A, 12 inputs

Of course, the question then could be whether those algorithms are truly comparable in the efficiency with e.g.
genetic programming and Cartesian genetic programming since those algorithms succeed in obtaining superior results
with 500 000 evaluations. Our intuition says no, but that does not apply only for the clonal selection algorithms, but
for all heuristics we tested that rely on the bitstring representation.

Furthermore, our experiments show that there is some merit in using floating point representation for these prob-
lems as there are problem instances where that encoding reaches the best results. Naturally, it is hard to compare
those results with related work since up to now floating point encoding for cryptographically suitable Boolean func-
tions was completely neglected. Finally, we note that since here we work with dimension of Boolean functions of up
to 16 inputs, there is also a gap in the literature concerning those larger Boolean functions sizes where we could find
only a few papers considering such dimensions [27, 25].

When comparing CLONALG and opt-IA algorithms, the situation is far more straightforward; except for the
smallest dimension where both algorithms consistently reach global optimum, opt-IA performs better. We note that
the opt-IA with the bitstring representation works better for larger sizes and for smaller sizes the floating point rep-
resentation behaves favourably. This is somewhat surprising, since with the increase of the number of inputs, the
bitstring genotype size rises exponentially (up to 65536 in our experiments), which considerably expands the search
space. The same increase applies to the floating point representation, but with a significantly smaller rate, so this
difference in performance could be attributed to the modification operators used in corresponding representations.

Another interesting research avenue would be to investigate more relevant cryptographic properties and see how
the aforesaid algorithms behave in those situations. With this step we would not only experiment with more difficult
objectives, but also concentrate to functions that are really usable in practice, as we said that here we consider only a
small subset of necessary properties for Boolean functions that are used in cryptography.

7. Conclusions

This paper concerns the efficiency of two well known immunological algorithms when applied to a combinatorial
optimization problem from cryptographic domain. Furthermore, we compare different representations of solutions
which allows the algorithms to be applied in both discrete and continuous domain. Considering the encodings, it
is impossible to reach any definitive conclusion whether the bitstring or the floating point encoding should be used.
However, we note that the results for the floating point encoding are sufficiently positive to deserve further investi-
gation. By using this encoding, we believe it could be also easier to switch to some other unique Boolean function
representation which would then open completely new research directions.
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The results show that the opt-IA algorithm performs better than the CLONALG algorithm, but both perform
slightly worse than the evolutionary algorithms we investigate. It can also be observed that the immunological algo-
rithms are more invariant to the design of the fitness function, which may prove beneficial in case of lacking gradient
information.
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