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a b s t r a c t 

The paper presents a new architecture framework in the field of expert and intelligent systems which is 

based on four paradigms: a novel multi-agent dynamic system architecture (MADS), an extended Belief 

Desire Intention (EBDI) agent community, autonomy-oriented entities (AOEs), and deep learning concepts. 

The main impact of the proposed framework is a new approach, or even a new way of thinking, which 

enables integration of the concepts of deep learning, a conventional approach to solving the domain prob- 

lem, cognitive agents with mental attitudes, and concepts of nature-inspired computing. All these allow 

the effective use of the framework in the field of intelligent and expert systems. The significance of the 

framework lies in its flexibility and adaptability based on the formal logical description of EBDI agents, 

the definition of the behaviour of AOEs, the use of classical modules for domain problem solving, and 

modules based on deep-learning concepts. We believe that the example of the adaptation of the pro- 

posed architecture framework to robust multi-face tracking illustrates the significance of the proposed 

framework. In this paper, MADS is adapted to the first two stages of a face de-identification pipeline: 

robust face detection and multi-face tracking. The proposed architecture of MADS has a two-level hierar- 

chical organization. At the first level there is a manager designed as an Extended Belief Desire Intention 

(mEBDI) agent. The extension of a manager BDI agent consists of a convolutional neural network-based 

face detector, a set of autonomous-oriented entities for the elimination of false positive face detections, 

and a trajectory memory. At the second level, there are many tracking agents (trEBDIs) which consist of 

a basic BDI agent extended with a face tracker based on position and scale correlation filters, a visual ap- 

pearance memory, and a trajectory memory. The mEBDI and trEBDI agents are defined by the modal logic 

and are described at the implementation level. The proposed architecture for a robust multi-face tracking 

system was tested on a subset of YouTube music videos. The qualitative results, as well as the prelimi- 

nary quantitative results expressed by the standard testing metrics, demonstrate the effective adaptation 

of the proposed multi-agent dynamic architecture to a robust multi-face tracking system. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Recent advances in cameras, recording devices, web technol-

ogy and signal processing have improved the effectiveness of video

surveillance, primarily for the benefit of security and law enforce-

ment. This technology is now widely exploited in a variety of sce-

narios to capture video recordings of people in public, semi-public

and even in private environments, either for immediate inspec-

tion or for storage, and for subsequent data analysis and sharing

( Ribari ́c, Ariyaeeinia, & Paveši ́c, 2016 ). Whilst in many situations,

such as law enforcement, forensics, bioterrorism surveillance, and

disaster prediction, there are justifiable reasons for recording, stor-

ing and analysing video data acquired in such ways, there is also
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 strong need to protect the privacy of individuals who are in-

vitably captured in the recordings. De-identification is one of the

asic methods for protecting privacy. It is defined as the process of

emoving or concealing personal identifiable information, i.e. per-

onal identifiers, or replacing them with surrogate personal iden-

ifiers, to prevent the recognition of an individual directly or indi-

ectly by human and/or machine ( Ribari ́c & Paveši ́c, 2017 ). 

An individual may be recognized (identified) based on bio-

etric physiological (face, ear, iris, fingerprint) and/or behavioural

voice, gait, gesture, lip-motion, style of typing) identifiers, but also

ased on a combination of both, or additionally with the help

f soft-biometric identifiers, such as body silhouette, age, gender,

ace, moles, and tattoos. 

The face is, without doubt, the main biometric personal iden-

ifier used for biometric-based identification at distance ( Jain &

i, 2011 ). Face-based identification is used in various application

cenarios – from identification of a person based on a still image

https://doi.org/10.1016/j.eswa.2019.02.008
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n a passport or on an identity card, through identification of per-

ons in photographs of crowded scenes, to identification based on

ace images captured either overtly or covertly by a video surveil-

ance system ( Ribari ́c & Paveši ́c, 2017 ). In many application scenar-

os, especially in video surveillance, privacy can be compromised. 

Face de-identification is a way to protect the individual’s pri-

acy in video surveillance systems ( Ribari ́c & Paveši ́c, 2015 ) and it

s performed by a so-called de-identification pipeline which con-

ists of the following three main pipeline stages: face detection,

ace tracking, and face masking by applying different privacy fil-

ers ( Ribari ́c et al., 2016 ). 

The first stage in a face de-identification pipeline is face detec-

ion. Due to large variances in poses of the face, sizes, bad lighting

onditions, the face affected by partial occlusion, the presence of

tructural components (e.g., glasses, sunglasses, beards) and clut-

ered scenes, face detection has to be robust. Face detection is a

ritical step in the process of de-identification. Note that privacy

ight be compromised in video sequences if face detection fails in

 single frame (and consequently it is not de-identified), so one of

he directions of research is the development of robust and effec-

ive face detectors. Use of state-of-the-art detectors, such as face

etectors for unconstrained face detection based on features called

ormalized Pixel Difference (NPD) ( Liao, Jain, & Li, 2016 ), detec-

ors based on deep convolutional networks ( Simonyan & Zisser-

an, 2015 ; Zhang, Zou, He, & Sun, 2016 ), hierarchical dense struc-

ures ( Wen, Lei, Lyu, Li, & Yang, 2016 ), and social context ( Qin &

helton, 2016 ) can guarantee very low false negative detection, ap-

roaching zero. On the other hand, due to the requirement for the

aturalness of de-identified videos, there is an additional demand

or low false positive detections. A combination of face detection

nd tracking, i.e., a combination of spatial and temporal correspon-

ence among frames, can improve the effectiveness of detection

nd localization of faces, and can help remove false positive detec-

ions. 

In this paper, a novel multi-agent approach to the first two

tages of pipeline de-identification (multi-face detection and track-

ng) in video sequences is described. Based on the concepts of

ulti-agent architecture for dynamic systems, a two-level hierar-

hical organization of a multi-face tracking system is proposed. It

s built based on extended BDI (Belief Desire Intention) agents, i.e.

xtended agents with mental attitudes. It consists of a manager

xtended BDI (mEBDI) agent at the first level and multiple tracker

xtended BDI (trEBDI) agents at the second level. 

The following might be considered the main contributions of

his work: (i) a new multi-agent dynamic system architecture

ased on extensions of the BDI concepts for intelligent applications

uch as complex computer vision tasks; (ii) a logical representa-

ion model of relations and mental attitudes of agents involved in a

ulti-agent dynamic system; (iii) the integration of an agent with

ental attitudes and autonomy-oriented entities for specific prob-

em solving; (iv) adaptation of the proposed architecture to online

ulti-face tracking in video sequences; (v) the integration of state-

f-the-art methods for face detection based on deep learning and

nline robust tracking with BDI agents; (vi) experimental verifica-

ion of the proposed approach. 

The paper is organized as follows. Section 2 describes the

ackground of the BDI model agency and related work in the

eld of object detection and tracking based on multi-agent con-

epts. Section 3 includes a formal definition of a model of MADS

nd its adaptation to face detection and multi-face tracking tasks.

ection 4 provides details of the architecture of a MADS for face

etection and multi-face tracking and the logical representation

f relations and mental attitudes of the extended BDI agents.

ection 5 describes the functions of the extended BDI agents in

ADS during initialization, regular face tracking, and exception.

ection 6 gives the implementation details related to specific func-
ions as extensions of the BDI agents – face detection, elimination

f false positive detections, and face loss detection based on state-

f-the-art methods. Section 7 describes an implementation experi-

ental setup and presents the results of the experiments and their

valuation. Section 8 deals with adaptation of MADS to different

lasses of problems. In the conclusion, some final remarks and fur-

her directions for research are given. 

. Related work 

.1. Background 

The multi-agent system presented in this paper is built on the

DI (Belief Desire Intention) model of agency, more precisely on

he extended BDI agent with autonomous entities ( Maleš & Ribari ́c,

016 ). In the first part of this section, the foundations of BDI agents

re given, as well as the idea behind autonomy-oriented entities.

n the second part, an overview is presented of the research work

elated to agent and/or multi-agent approaches to object detection

nd tracking. 

The BDI model was initially introduced by Bratman (1987) and

hen refined by Rao and Georgeff (1991) and Rao and Georgeff

1995) for real implementation in agent-based systems. A BDI

gent is a cognitive agent and has mental attitudes: beliefs, desires

nd intentions. Beliefs represent the informational state of a BDI

gent, i.e. what it knows about itself and its environment. Desires

or goals) are its motivational state, that is, what the agent prefers

nd wants to achieve. Intentions represent the deliberative state

f the agent and they tend to lead to action. Logical foundations

f agency have been established since the late 1980s, but never-

heless multi-agent system models built on logic are still popular.

ince then, a number of logical theories of agency have been devel-

ped ( Dix & Fisher, 2011; Fisher, Bordini, Hirsch, & Torroni, 2007 ).

he reason is that logic can be a powerful tool for reasoning about

ulti-agent systems ( van der Hoek & Wooldridge, 2012 ). Van der

oek and Wooldridge present three reasons for this. The first is

hat logics provide a language for specification of the properties of

n agent, a group of agents, and of the environment. The second

eason is that such properties are expressed as a logical formula

hat forms part of some inference system and can be used to de-

uce other properties. The third reason is that logics provide a for-

al semantics in which sentences from the language are assigned

 precise meaning. 

The BDI agents balance pro-active goal seeking behaviour and

eactive responses to changes in the environment ( Singh, Padgham,

 Logan, 2016 ). They have a hierarchical plan library of pre-defined

lans. Each plan has conditions under which certain circumstances

ill be executed to fulfil a goal in a given situation ( Singh, Sar-

ina, Padgham, & Airiau, 2010 ). When an unexpected event occurs,

ften because the environment has changed, agents backtrack and

mplement a different strategy for the new situation. In this sense,

DI agents are adaptive. A limitation of BDI agents is their lack of

earning capabilities, i.e. they are unable to learn new behaviours

rom their experience ( Airiau, Padgham, Sadrina, & Sen, 2008 ). The

DI agents are inspired by the human concept of knowledge and

eliberation which makes them easy to understand for humans.

n the other hand, the process of logical computation is often in-

ractable, undecidable and brittle ( Van Dyke Parunak, Nielsen, &

rueckner, 2006 ). At the implementation level, a BDI agent can be

epresented by the following structure ( Meng, 2009 ): 

< BDI Agent > { < Beliefs > 

Constrains; Data Structures; 

< Desires > 

Values; Conditions; Functions; 

< Intentions > 

Methods; Procedures} 
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Completely different types of agents are autonomy-oriented en-

tities. They are inspired by swarm intelligence ( Dorigo & Stüt-

zle, 2010 ; Garnier, Gautrais, & Theraulaz, 2007 ; Kennedy, Eberhart,

& Shi, 2001 ). They emulate animal behaviour where the emphasis

is not on individual behaviour but on society as a whole, which

might be described as intelligent. An internal representation is nu-

merical so they use optimization methods for exploring parame-

ter space. This approach makes them computationally efficient on

one hand, and on the other they are difficult to understand from

the human standpoint; for example, knowledge is hidden on the

weight between two nodes in neural networks or in the strength

of the pheromone of an ant trail ( Dorigo & Stützle, 2010 ). Systems

based on nature-inspired computing (NIC) utilize autonomous en-

tities that self-organize to achieve the goals of system modelling

and problem solving ( Liu & Tsui, 2006 ). Besides the characteris-

tic of self-organization, NIC-based systems are autonomous, dis-

tributed, emergent, and adaptive. Autonomy-oriented computing

(AOC) ( Liu, Jin, & Tsui, 2004 ) is a concrete manifestation of the

NIC paradigm applied in the field of computer science that ex-

plores metaphors and models of autonomy offered in nature. The

AOC system is a multi-agent system (MAS). It has the character-

istics of self-organization, self-organized computability, interactiv-

ity, and computational scalability in solving large-scale computa-

tionally hard problems or modelling complex systems ( Yang, Liu,

& Liu, 2010 ). In AOC, computation is based on autonomy-oriented

agents or entities (AOEs). They spontaneously interact with their

local environments, self-organize their structural relationships, and

operate based on their behavioural rules. This process is known as

self-organization and it is the core of AOC ( Liu, 2008 ). 

The integration of different types of agents such as BDI agents

and autonomy-oriented entities in a single system might be a chal-

lenge, since they possess different cognitive levels. In the proposed

approach, these two types of agents are integrated in a single ar-

chitecture of a manager EBDI agent. 

2.2. Use of agents and multi-agent systems for computer vision 

applications (object detection and tracking) 

Graf and Knoll (20 0 0) proposed a multi-agent system architec-

ture dedicated to the model of computer vision systems. The main

aim of the proposed architecture was to provide a decentralized

computer vision system with a high degree of flexibility. The ba-

sic idea of the architecture is to model a vision system as a soci-

ety of autonomous agents, where each of them is responsible for a

specific vision task. The authors defined two types of agents: (i) a

master agent which contains an inference engine, general and in-

dividual knowledge, working memory, and a communication mod-

ule; and (ii) a slave agent with very simple architecture consisting

of processing functions, a communication module, and rudimen-

tary mechanisms for interpreting messages. As a test bed for the

proposed approach, the authors adapted an object recognition sys-

tem to multi-agent architecture. 

The experiment was performed only for the static scene con-

sisting of the simple overlapping two-dimensional objects (ledges

and rims), and the recognition task for the multi-agent system was

to recognize the objects that match the object specification (3-

hole-ledges and two red rims). The system failed to detect one red

rim (among six rims), but the authors claimed that this was not a

problem of the multi-agent architecture but rather of an inaccurate

feature extraction. 

The idea to model a vision system as a society of two types of

autonomous agent was promising but the distribution of respon-

sibility between the master agent with an inference engine and

simple slave agents with only processing and communication func-

tions represents a drawback of the approach. The complex com-
uter vision tasks require not only a distribution of functions but

lso a distribution of intelligence. 

Kip ̌ci ́c and Ribari ́c (2005) described a multi-agent-based ap-

roach to face detection and localization in colour images. The

ssembly of agents consists of autonomous behaviour agents

hich are randomly distributed throughout the image. Based on

he innate agents’ behaviour functions, such as diffusion, self-

eproduction and dying, the agents detect and mark skin-colour

ixels using a combination of HSI and RGB colour models. The

arked skin-colour pixels are candidates of face-like regions. Each

f these regions is represented by an agent’s family. Using the in-

ormation about the shape of the agent’s families, the final deci-

ion is made about regions which represent a human face. The ap-

roach was tested using both the XM2VTS database of frontal face

mages and images containing people in natural situations. 

The experiments were performed on the dataset consisting of

ore than 580 images. The authors reported 94.5% of correct face

etection and localization with 6% of the false acceptance rate. Us-

ng a set of autonomy-oriented agents based on nature-inspired

omputing can be effective but only for specific and relatively sim-

le computer vision tasks (e.g., low-level image processing, the de-

ection of predefined objects). The assembly of autonomous be-

aviour agents dedicated to specific functions can be a component

f a system for solving complex tasks. 

A multi-agent system for people detection and tracking us-

ng stereo vision in mobile robots is presented in Muñoz-

alinas, Aguirre, García-Silvente, Ayesh, and Góngora (2009) . The

ulti-agent system provides a basic set of perceptual-motor skills

seful for mobile robotic applications that are required to inter-

ct with human users. The multi-agent system architecture is hi-

rarchical, based on a functional design, and has three levels:

ardware managers, behaviours, and skills. Each level comprises

 set of agents with different tasks. For example, the behaviour

evel comprises a set of agents that implement behaviours which

re combined to create more complex ones (named skills). Peo-

le detection and tracking are performed using stereo vision (ob-

ained by a StereoCamera agent), a plan-view map representa-

ion of the data, and an agent which uses position and colour

nformation. 

The authors defined the experimental setup of five sets of ex-

eriments performed on their private database. The first three sets

est the ability to detect persons, while the fourth and fifth evalu-

te person tracking. The authors report that the success of person

racking was between 74.2% and 92.4% (depending on the number

f persons in the scene). 

The proposed multi-agent system is tailored for specific mobile

obot tasks which also include interaction with human users. The

roposed architecture is robot oriented and is not generic enough

o be implemented for wider computer vision applications. 

BDI-based multi-agent reconfigurable architecture for real-time

bject tracking is proposed in Meng (2009) . The author pro-

oses reconfigurable computing, i.e. a reconfigurable system-on-

hip (rSoC) platform with microprocessors and field-programmable

ate arrays (FPGAs). To simplify the hardware/software interface,

DI multi-agent architecture is proposed as the unified framework.

he system is decomposed into agents based on system specifica-

ions, where agents can accomplish some specific tasks (task graph

artitioning, tracking) independently and can communicate with

ach other. 

To evaluate the proposed approach, a tracking video exper-

ment was conducted on the video sequence (frame resolution

20 × 240) in an office environment. The scene included one per-

on, occlusion and situations where a person disappears, and reap-

ears. The author did not give the quantitative results but only

oncluded that the “proposed algorithm showed the robustness to

eep tracking the object all over the cases". 
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The approach of using BDI-based reconfigurable multi-agent ar-

hitecture for real-time object tracking and its hardware imple-

entation are promising, but the author did not provide quanti-

ative results of the experiments. 

Multi-agent architecture based on the BDI model for data fu-

ion in visual sensor networks is shown in Castanedo, García, Patri-

io, Miguel, and Molina (2010) . The proposed architecture per-

orms tracking, data fusion, and coordination. The authors focus

n how to fuse the tracks from different agents which are applied

o the same object. The proposed Cooperative Sensor Agent ar-

hitecture is based on the Procedural Reasoning System computa-

ional model, specifically on JADEX. It is composed of three differ-

nt types of agents: surveillance-sensor agents, fusion agents, and

nterface agents. Surveillance-sensor agents and fusion agents pos-

ess beliefs, desires and intentions, while interface agents receive

he fused data and show them to the final user. 

The suitability of the proposed multi-agent system was evalu-

ted in two different scenarios. The first one is given by indoor

racking in the laboratory using a recorded video file with three

ifferent cameras. The second one is performed using the APIDIS

ataset ( APIDIS basketball dataset ) composed of 1500 frames of a

asketball game acquired by seven 2-Megapixels cameras mounted

bove a basketball court. In the first scenario, the focus was on

valuating the tracking continuity of the target obtained using the

used values, and the mean absolute error of the fused values

gainst manually annotated ground-truth values. In the second sce-

ario, the performance of the system was evaluated when more vi-

ual sensors were used. The results of the exhaustive experiments

re shown in a number of tables and diagrams (position/time in-

tant) in which the distances between the positions of the tracked

bjects and the ground truth positions were expressed in cm. 

The research was primarily oriented to fuse the tracks obtained

rom different agents which are applied to the same object. An

pproach which combines BDI agents at two levels (surveillance-

ensor and fusion) and "ordinary" inference agent leads to the em-

ryonic idea of a hybrid architecture. 

In Gascuena and Fernandez-Cabalero (2011) , the authors de-

cribe the use of agent technology in intelligent, multisensory and

istributed surveillance. They list multisensory distributed surveil-

ance systems which did not use agent technology and surveillance

ystems based on agent technology in the period 1997–2009. 

A path-planning method for multi-human tracking by mul-

iple agents based on long-term prediction is presented in

akemura, Nakamura, Matsumoto, and Ishiguro (2012) . The aim

s to obtain detailed information about human behaviours and

haracteristics. The objective of path-planning is to find paths for

gents so that they will continue to follow humans at close range.

he agent’s paths are planned based on the similarity between the

redicted positions of humans and the agent’s field of view. 

The authors conducted three simulation experiments where

umans moved constantly, moved following two rules, switching

rom one to the other, and an experiment using real human move-

ent data observed in a Kyoto subway station. The results of

he experiments showed that the performance of human tracking

ould be kept high even in a changing environment. 

A memory-based multi-agent model for tracking a moving ob-

ect is presented in Wang, Qi, and Li (2013) . Agents are randomly

istributed near the located object region and mapped onto a 2D

attice-like environment for predicting the new location of an ob-

ect by their co-evolutionary behaviours (competition, recombina-

ion, and migration). The three-stage human brain memory model

ultrashort-term memory, short memory, and long-term memory)

s incorporated into a multi-agent co-evolutionary process for find-

ng a best match of the appearance of the object. 

The efficacy of the proposed multi-agent system was verified on

heir own video dataset. The first set of experiments was related
o tracking a person with abrupt appearance changes. The second

et was aimed at tracking persons who were occasionally occluded.

he authors claim that the proposed method could deal with large

ppearance changes, as well as heavy occlusions. 

The approach which integrates behavioral agents which are ran-

omly distributed near the located object region (a similar ap-

roach described in Kip ̌ci ́c and Ribari ́c (2005) and a model of the

uman brain is interesting and promising but requires additional

laboration of the distribution of the functions of three-level mem-

ry organization. 

In recent work, an agent-based framework for individ-

al tracking in unconstrained environments is presented in

aghetto, Aguiar, Zaghetto, Ralha, and de Barros Vidal (2017) . The

ramework is composed of three different types of agents: face

etector, face tracker, and manager. The face detector and tracker

gents perform fully automatic single-sample face recognition, and

rack individuals using Viola-Jones and Speeded Up Robust Fea-

ures (SURF) algorithms. A functional interaction model is based

n the Contract Net Protocol and uses FIPA-ACL as the communi-

ation protocol. Agents communicate through a shared directory in

he cloud. 

The preliminary experimental results showed that the frame-

ork agents (face detector, face tracker, and manager agent) could

dequately execute the tasks they were assigned, considering the

etection, identification and tracking of individuals within an en-

ironment under surveillance. The quantitative results and metrics

ere not given. 

The strengths of the proposed multi-agent intelligent system

re the use of distributed and parallel processing and cloud storage

ervices among detector, tracker and manager agents. The weak-

esses are the fact that very simple methods are used for face de-

ection (Viola-Jones), tracking and face recognition are based on

URF, and the testing procedure is performed for few people in

n extremely simplified indoor scenario (non-moving camera and

arget). 

Considering the pros and cons of the methods described in

he related works, we propose a new architecture framework in

he field of intelligent systems which is based on four paradigms:

 novel multi-agent dynamic system architecture (MADS), an ex-

ended Belief Desire Intention (EBDI) agent community, autonomy-

riented entities (AOEs) and deep learning concepts. The main ad-

antages of the proposed architecture are: 

(i) A generic multi-agent dynamic system (MADS) architecture

based on different types of agents (BDI and AOE), deep-

learning concepts and conventional methods adaptable for

a wide range of complex problems in the field of expert

and intelligent systems. To illustrate this, we described an

application of MADS in the field of computer vision (robust

multi-face tracking). 

(ii) Integration of extended BDI agents and autonomy-oriented

behavioural agents to manage and evaluate outcomes ob-

tained by the CNN module(s). Owning to the mental atti-

tudes of a BDI agent, specified by the modal logic approach,

it is possible to represent common-sense and expert knowl-

edge and verify or correct the results (e.g., activation of AOEs

when the confidence level of the CNN detector is below the

threshold). 

(iii) Multiple BDI agents at the lower level and assigning a spe-

cific function to each of them enable the simultaneous ex-

ecution of tasks and supervision of the obtained outcomes

(e.g., checking the tracker confidence value based on the

Peak to Sidelobe Ratio (PSR)). 

(iv) The proposed architecture allows integration of state-of-the-

art methods controlled by the mental attitudes of agents

(e.g., a CNN-based face detector, a tracker based on multi-
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ple discriminative scale and space invariant correlation fil-

ters, and a detector of target loss). 

The main disadvantages of the proposed architecture are: 

(i) It requires both a specific domain knowledge to design the

mental attitudes of agents and a training dataset to adjust

the number parameters (e.g., the face detection confidence

threshold, the PSR threshold, the maximum age for all AOEs

…). 

(ii) Potentially intensive communication traffic between the

agent(s) at the higher level and agent(s) at the lower lev-

els in an exceptional situation (e.g., suspension of tracker

agents when they lose the target, the appearance of new

faces , and/or face re-detection). 

The problem of multi-face tracking in unconstrained videos is

still far from being resolved. The main reasons for this are the

inability to detect faces in an unconstrained environment due

to the multi-pose appearance of faces, changes of facial expres-

sions, the presence of structural components and significant vari-

ations in the face scale and scene illumination in multiple shots.

Short- and/or long-term facial occlusions and the multiple enter-

ing and exiting of persons in/out of the camera field of view re-

main challenging problems. Recently, the following developments

have appeared: multi-face tracking systems with state-of-the-art

performance which use a conventional computer vision approach

based on discriminative correlation filters for translation and scale

estimation ( Danelljan, Häger, Khan, & Felsberg, 2017 ); a novel

model of multi-face tracking and clustering of faces, and a re-

identification algorithm which combines the co-occurrence model

of multiple body parts to seamlessly create face tracklets, and re-

cursively link tracklets to construct a graph for extracting clusters

( Lin & Hung, 2018 ); and an approach ( Mar ̌ceti ́c & Ribari ́c, 2018 )

based on deep neural networks for face detection and face recog-

nition of normalized detected faces (to minimize the number of ID

switches). 

3. Model of a multi-agent dynamic system (MADS) 

3.1. MADS – general definition 

There is no unique definition of the term “multi-agent system

(MAS)”. According to Weiss (1999) , a multi-agent system is sim-

ply defined as “a system composed of multiple, interacting agents”.

Shoham and Leyton-Brown (2008) define MAS as a system which

contains autonomy entities (agents) with different information and

interests. Stone and Veloso (20 0 0) define MAS as a loosely coupled

network of problem-solving entities (agents) that work together to

find answers to problems that are beyond the individual capabil-

ities or knowledge of each entity (agent). Ferber defines the con-

cept of MAS as a system which comprises the following elements

( Ferber, 1999 ): an environment E, a set of objects O, an assembly

of agents A, an assembly of relations R, an assembly of operations

Op, making it possible for the agents of A ⊆ O to perceive, produce,

consume, transform and manipulate objects from O, and operators

which specify tasks and reactions of the world. Based on Ferber’s

approach, we define a multi-agent dynamic system, which has the

characteristics specified by Stone and Veloso, as follows. 

In general, the model of a multi-agent dynamic system is de-

fined as 11-tuple: 

MADS = (A , O , T , �, R , ρ, α, ε, χ, R T , v ) , 

where: 

– A is a set of agents; 

– O is a set of objects in a dynamic environment, A ∩ O = ∅ ; 
– T is a set of time points t ∈ T; 
– � is a set of temporal intervals τ ∈ �, τ = [t 1 , t 2 ], where t 1 ≤
t 2 ; t 1 ,t 2 ∈ T (when t 1 = t 2 temporal interval τ is converted in

a time point); 

– R is a set of relations with temporal constraint. 

Other elements of the 11-tuple are defined below: 

– ρ is a temporal constraint relation function : A ∪ O × A ∪ O ×
A ∪ O ×�→ R, which describes relations between agents and an

object during a temporal interval τ ∈ �; 

The functions α, ε, and χ describe the existence of elements of

ets A, O and R, respectively, at each time point: 

– α is an agent existence function α: T → ξ (A), maps a time point

t into one or more agents from the set A, where ξ (A) is a par-

tition set of A, i.e. α defines the presence of the agents in the

system at time t; 

– ε is an object existence function ε: T → ξ (O), maps a time point

into one or more objects from the set O, where ξ (O) is a par-

tition set of O, i.e. it defines the presence of the objects in the

system at time t; 

– χ is a relation existence function χ : T → ξ (R), maps a time point

into one or more relations from the set R, where ξ (R) is a par-

tition set of R, i.e. it defines the existing relations in the system

at time t; 

– R T is the set of relations between two temporal intervals or/and

time points. The set R T consists of the following temporal rela-

tions: before, meets, during, overlaps, starts, finishes, equal and

their inversions; 

– ν is a temporal relation function, v : �×�→ R T, it maps a pair of

temporal intervals or/and time points into a relation from the

set R T . 

One of the basic characteristics of a dynamic system is its

hanging during time. Let t 1 , …t i , …∈ T be time points in which

lements of sets A, O and R are observed. MADS = (A, O, T, �, R, ρ ,

, ε, χ , R T , ν) is dynamic when ∃ t i , t j ∈ T, t i � = t j and at least one

f the following conditions is satisfied: 

(i) α(t i ) � = α(t j ); 

(ii) ε(t i ) � = ε(t j ); and 

(iii) χ (t i ) � = χ (t j ). 

The model of the multi-agent dynamic system MADS is domain

ndependent. The elements of MADS 11- tuple can be adapted and

xtended depending on a specific problem. 

.2. MADS adapted to a multi-face tracking system 

For the purpose of adapting MADS for multi-face tracking in

ideo sequences, the following modifications and new elements of

ADS are introduced. 

An agent can be any entity which has mental attitudes and

s capable of deliberating, reasoning, making decisions, and act-

ng autonomously. Set A is a finite set of agents where A = A M 

 A TR . There are two types of agents: manager agent a i ∈ A M 

, i = 1,

n , called a manager Extended Belief Desire Intention (mEDBI)

gent, and tracker agents a j ∈ A TR , j = 1, …, m , called tracker Ex-

ended Belief Desire Intention (trEBDI) agents. The basic require-

ent is the existence of at least one manager agent and one

racker agent. Note that a manager agent mEBDI is extended by a

et of autonomy-oriented entities or agents (AOEs) which are used

or the elimination of the false positive detection of faces during

he detection phase. 

The objects o i ∈ O; i = 1, 2, … are elements of MADS on which

he agents act. In the proposed system, the objects are faces (face

mage patches) which are assigned to the tracker agents. 
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Fig. 1. The multi-agent architecture of a dynamic system. 

Table 1 

Manager agent, tracker agents, faces and corresponding sub- 

sets of relations R = R 1 ∪ R 2 ∪ R 3 ∪ R 4 . 

Relation Manager Face i Tracker agent i Set 

Detect + + – R 1 
Create + − + R 3 
Assign + + + R 2 
Inform_t + − + R 3 
Inform_m + − + R 3 
Activate + − + R 3 
Track − + + R 4 
Validate − + + R 4 
Lost + + + R 2 
Redetect + + + R 2 
Suspend + − + R 3 
Re-track − + + R 4 
Update_m + + − R 1 
Update_t − + + R 4 
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Temporal constraint relations from set R describe the relation-

hips among the manager agent, a tracker agent and an object

face) in time. Only relations relevant to a problem domain are

aken into consideration as follows: set R, which is defined as

 = R 1 ∪ R 2 ∪ R 3 ∪ R 4 , where the elements of the subset R 1 are

elations between the manager agent and a face; elements of the

ubset R 2 are relations among the manager agent, a face and a

racker agent; elements of the subset R 3 are relations between the

anager agent and a tracker agent; and elements of the subset R 4 

re relations between a face and a tracker agent. Table 1 represents

gents, objects, and corresponding subsets of relations R i , i = 1, 2,

, 4. Note that each relation has a temporal constraint defined by

, which means that the relation holds in a specific time interval

. In this specific context of multi-face tracking in videos, a time

nterval τ j which corresponds to a frame j, is 

j = [ j / fps , (j + 1) / fps ] , 

here fps denotes frames per second. 

The interval τ j consists of the (sub)intervals τ k 
j : 

j = 

4 ∑ 

k=1 

τ j 

k 

Four (sub)intervals correspond to procedure steps performed

uring face tracking. 

Consequently, instead of one temporal constraint relation func-

ion ρ (defined in Section 3.1 ) for the specific system, four tempo-

al constraint relation functions are modified and defined: 

1 : A M 

× O × � → R 1 , ρ2 : A M 

× O × A TR × � → R 2 , 

3 : A M 

× A TR × � → R 3 and ρ4 : O × A TR × � → R 4 . 
In addition, the MADS model is extended with five functions: 

– face position fp: O → P, which maps a set of face image patches

O into a set of positions P ⊂ N × N , where the elements of P

are positions ( x , y ) ; x , y ∈ N of face image patches from O in a

frame with the resolution m by n; n, m ∈ N ; 

– face image patch size fs: O → S , s ∈ S ⊂ N is a side length of a

square patch where a face is detected; 

– detector confidence dc: O → [0, 1], which defines face detector

assurance that a face image patch contains a face; 

– face label fl: O → N , which maps a face image patch (which con-

tains a face) to a unique identity label (index); 

– tracker confidence tc: O → [0, 1] which defines face tracker as-

surance that a tracked face image patch contains a face. 

The model of a multi-agent dynamic system for multi-face

racking in video sequences is defined as: 

ADS ∗ = (A , O , T , �, R , ρ, α, ε , χ, R T , v , fp , fs , dc , fl, tc) . 

The dynamic of MADS ∗ is mirrored in the fact that at least one

f the conditions (i)–(iii) (see Section 3.1 ) is satisfied, with an addi-

ional changing of a face position fp, face_size fs, detector confidence

c, face label fl and tracker confidence tc. 

. Architecture of a multi-agent dynamic system for multi-face 

racking 

The architecture of a multi-agent dynamic system is repre-

ented as a two-level hierarchical organization ( Fig. 1 ). At the first

evel there is a manager designed as an Extended Belief Desire In-

ention (mEBDI) agent. The extension of BDI consists of a face CNN

etection module, a set of autonomous oriented entities (AOEs),

nd a trajectory memory (mTM). 

The mEBDI agent is responsible for the management of a whole

ulti-agent face tracking system: face detection, elimination of

alse positive face detections, the initialization of multi-face track-

ng, the creation and activation of tracking agents (trEBDI), and

he maintenance of face trajectories of all tracked faces. When a

racking failure occurs, the mEBDI agent re-initializes face detec-

ion, and, based on the results of the detections, assigns a detected

ace to the corresponding tracking agent trEBDI, or creates a new

racking agent or agents. 

At the second level, there are a number of tracking agents

trEBDIs) which consist of a basic BDI agent extended with an inte-

ration module. The integration module consists of a tracker based

n position and scale correlation filters (DSST), a visual appearance

emory (VAM), and a trajectory memory (TM). 
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Fig. 2. The architecture of a mEBDI agent. 
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4.1. Manager agent (mEBDI) 

The architecture of the mEBDI agent is shown in Fig. 2 . It con-

sists of three basic modules which are common to all types of BDI

agents (Belief, Desire and Intention), a convolutional neural net-

work (CNN) detection module, a set of autonomy-oriented entities

(AOEs), and a trajectory memory (mTM). The mEBDI acts in the

following manner. The detection module based on the CNN de-

tects faces in the frames of a video sequence and then invokes

autonomy-oriented entities (AOEs) which eliminate false positive

face detections. The behaviour of the AOEs is the same as in Kip ̌ci ́c

and Ribari ́c (2005) . After the elimination of false positive face de-

tections, the CNN detection module sends information to the be-

lief and the desire modules. Specifically, the CNN detection module

sends the following parameters (face data): the detector confidence

value, the position ( x, y ) of a square image patch where a face is

detected in a frame, the side length s of this square patch, a face

label, and the time of detection (see the definition of functions in

Section 3.2 ). 

The initialization procedure of the system starts with face de-

tection and the elimination of false positive faces, i.e. vague face

region candidates for which the CNN score (the detector confi-

dence level) is below the experimentally determined threshold

which is 0.72. The threshold for the CNN score is determined by

the video training subset consisting of three YouTube music videos

(Pussycat Dolls, Bruno Mars, Darling), which are excluded from the

process of the experimental evaluation of the proposed system. 

Then, the initialization procedure continues with the following

activities (see Section 5.1 ): the mEBDI agent believes that faces are

detected in the frame in a video sequence and it desires to create

the trEBDI agents, to assign the detected faces to the trEBDI agents,

and, finally, to activate them. The intention module uses the be-
T  
iefs and desires and creates an intention. At the end of the ini-

ialization, the corresponding face data are sent to a belief module

f each trEBDI agent, and a trEBDI agent is activated. The mEBDI

gent stores the list of face trajectories in a trajectory memory

mTM) for all trEBDI agents. The list will is used in the following

ituations: (i) regular face tracking; (ii) tracking exception when

rEBDI agents lose tracked faces; and (iii) when the final results of

ace tracking are required. Besides initialization, the mEBDI agent

upervises all trEBDI agents. When the trEBDI agent has lost the

racked face that is assigned to it, it informs the mEBDI agent by

ending a message to the mEBDI agent’s belief and desire modules.

his message will stipulate the mEBDI agent to create an intention

o redetect the lost face. 

A component of the mEBDI agent called a trEBDI generator cre-

tes a trEBDI agent, assigns a face to it, and activates the trEBDI

gent. In the phase of regular tracking and when the trEBDI agents

ose their faces, the trEBDI generator transfers messages among the

EBDI agent and the trEBDI agents. A detailed description of the

unctions of the mEBDI agent is given in Section 5 . 

.2. Tracker agent (trEBDI) 

The architecture of a trEBDI agent consists of a belief module, a

esire module, an intention module, and an integration module as

n extension ( Fig 3 ). 

The mEBDI agent creates trEBDI agents using information about

etected faces (face data). The trEBDI agents store this informa-

ion in their belief modules. The activated trEBDI agent believes

hat the face is assigned to it, and it believes in the received

ace data. The trEBDI agent desires and intends to track the face.

uring regular tracking, the trEBDI agent believes and desires to

rack the face and therefore determines a tracker confidence value.

he tracker confidence value is determined based on a normalized
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Fig. 3. The architecture of a trEBDI agent. 
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alue of a Peak to Sidelobe Ratio (PSR) ( Bolme, Beveridge, Draper,

 Lui, 2010 ) (see Section 6.2 ). An agent intends to validate the

racker confidence value. When the trEBDI agent believes that the

racker confidence value is above the prescribed threshold, it in-

ends to update its own beliefs and desires with the face data, and

hen intends to inform the mEBDI agent by sending it the face data

see Section 5.2 ). 

The elements of the integration module are an "off-the-shelf"

iscriminative Scale Space Tracking (DSST) tracker ( Danelljan et al.,

017 ), a visual appearance memory (VAM), and a trajectory mem-

ry (trTM). A VAM stores visual appearance information about the

racked face represented by F-HOG features ( Felzenszwalb, Ross,

cAllester, & Ramanan, 2010 ). The visual appearance information

s used: (i) to support regular tracking by using circular correla-

ion between the stored F-HOG features and the features obtained

rom the current frame; and (ii) to determine a tracker confidence

alue based on the normalized PSR score. A trTM stores informa-

ion about recent face positions and sizes. The intention module

nduces the DSST tracker to operate in the integration module. Ev-

ry 1/fps (see Section 3.2 ), a new frame from a video sequence is

resented to the DSST tracker that estimates a new face position

nd the size parameters and sends this information to the mEBDI. 

When a trEBDI agent has lost a face (it believes in that), it de-

ires and intends to inform the mEBDI agent about this. It sends its
 t  
eliefs and desires to the mEBDI’s belief and desire modules (face

ata are a component of the trEBDI agent’s beliefs). The trEBDI

gent changes its state from an active to a suspended state. It re-

ains in the suspend state until the mEBDI redetects the face and

ssociates it with the trEBDI agent that had previously tracked that

ace. With these new beliefs and desires, the mEBDI initiates the

edetection process. The mEBDI agent initiates CNN face detection

nd the elimination of false positive face detections by AOEs. A

etailed description of the functions of a trEBDI agent is given in

ection 5 . 

.3. Interaction among the mEBDI and trEBDI agents 

Interaction among the mEBDI agent and trEBDI agents is per-

ormed through cooperation and communication. The mEBDI agent

nd trEBDI agents communicate by interchanging information

bout their beliefs and desires. They create intentions that induce

he transfer of beliefs and desires from one agent to another. When

n agent (mEBDI or trEBDI) has an intention to inform an agent of

nother type (mEBDI to trEBDI and/or trEBDI to mEBDI), it sends

ts beliefs and desires, where the face data are a component of the

gent’s beliefs. The first transfer of face data is done at the end of

he initialization of the multi-face tracking system (see Section 5.1 )
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when the mEBDI needs to transfer its beliefs about the detected

faces to trEBDI agents and activate them to track those faces. 

During regular tracking, trEBDI agents send information to the

mEBDI agents. The mEBDI agents store information in the trajec-

tory memory (mTM) (see Section 5.2 ). 

If some of the active trEBDI agents have lost their tracked faces,

they inform the mEBDI agent. Consequently, the mEBDI agent first

starts a new detection procedure and then the elimination of false

positive face detections. The results are detected faces. Based on

information stored in the trajectory memory (mTM), the mEBDI

agent believes which face belongs to which active trEBDI agent,

and the remaining faces are declared as unresolved. 

The mEBDI agent sends messages about all the unresolved faces

to all suspended trEBDI agents. The mEBDI agent and the sus-

pended trEBDI agents exchange a few messages with information

about the unresolved detected faces. All suspended trEBDI agents

determine a tracker confidence value for all unresolved faces and

send a message containing this value to the mEBDI agent. Depend-

ing on the received tracker confidence value, the mEBDI agent con-

cludes on the assignment of a face identity label to the suspended

trEBDI agents and sends messages to them. The content of the

message enables some trEBDI agents to continue tracking faces for

which the tracker confidence value is above the threshold. Other

trEBDI agents with a tracker confidence value below the threshold

remain suspended (see Section 5.3 ). New trEBDI agents are initial-

ized for the remaining unresolved faces. 

All the above-described activities of the mEBDI agent and

trEBDI agents are given in the details in Section 5 . 

4.4. Logical representation of relations and mental attitudes of agents

The mEBDI agent and trEBDI agents have mental attitudes (be-

liefs, desires and intentions) that are denoted by modal logic op-

erators: BEL, DES and INT. The agent’s mental attitudes are repre-

sented by two formulas ( Maleš & Ribari ́c, 2016 ): 

(i) ϕ – the agent mental attitude content formula; and 

(ii) ψ – the agent mental attitude formula. 

The agent mental attitude content formula ϕ is defined as: 

ϕ := P ( v 1 , . . . , v n ) | ¬ ϕ | ( ϕ 1 ∧ ϕ 2 ) | ∀ v i ϕ, 

where a predicate P(v 1 , …, v n ) is an atomic formula. The terms

v 1 , …, v n are: (i) constants – mEBDI agent; (ii) variables – trEBDI

agents {trEBDI 1 , trEBDI 2 , …}, faces {face 1 , face 2 , …}; (iii) temporal

variables (time points t or temporal intervals τ ); and iv) functions

– fp, fs, dc, tc and fl. 

The formula ϕ defines the content of an agent’s mental atti-

tudes, e.g. beliefs, desires and intentions. In order to define the

agent’s mental attitude, the formula ψ is defined as: 

ψ := BEL ϕ | DES ϕ | INT ϕ | ¬ ψ | ( ψ 1 ∧ ψ 2 ) | ∀ v i ψ, 

where BEL, DES and INT are modal operators and ϕ is a formula. 

The mEBDI and trEBDI agents create intentions according to

their beliefs and desires. The form of the rule for creating an in-

tention is BEL ϕ ∧ DES ϕ → INT ϕ. 

An agent’s mental attitudes have temporal constraints, i.e. the

temporal duration of an agent’s beliefs, desires and intentions are

written in the formula ϕ. The modal operator BEL satisfies these

properties: the necessity rule and axioms K, D and T ( Blackburn &

van Benthem, 2007 ). The modal operator DES and INT satisfy these

properties: necessity rule and axioms K and D. 

Interpretation of the formulas ϕ and ψ are given below. 

A predicate P(v 1 , …, v n ) is further defined depending on a num-

ber of arguments as an n -place predicate: 

– for n = 2 the terms are temporal variables (defined by the set
R T ). F  
The following predicates are defined on the elements of the

et R: 

– for n = 3 the terms are (mEBDI agent, face i , temporal variable),

(mEBDI agent, trEBDI i agent, temporal variable) and (face i ,

trEBDI i agent, temporal variable); 

– for n = 4 the terms are the mEBDI agent, faces, trEBDI i agents

and temporal variables. 

The terms of the 6-place predicate are faces, functions fp, fs, dc

r tc and fl (see Section 3.2 ) and a temporal variable. 

The elements of the set R T are relations between the temporal

ariables (where τ is an interval and t is a time point) and they

re written as a 2-place predicate: Meets( τ 1 , τ 2 ), Before( τ 1 , τ 2 ),

uring( τ 1 , τ 2 ), Overlap( τ 1 , τ 2 ), Starts( τ 1 , τ 2 ), Finishes( τ 1 , τ 2 ) and

qual( τ 1 , τ 2 ); Meets(t, τ ), Before(t, τ ), During(t, τ ), Starts(t, τ ) and

inishes(t, τ ); Before(t 1 , t 2 ) and Equal(t 1 , t 2 ) ( Allen, 1983 ). 

The elements of the set R = R 1 ∪ R 2 ∪ R 3 ∪ R 4 are relations

mong the mEBDI agent, faces, trEBDI agents that hold during the

emporal interval τ or time point t and are written as a 3-place or

-place predicate. 

The 3-place predicates are: Detect(mEBDI, face i , τ ), Cre-

te(mEBDI, trEBDI i , τ ), Inform_m(mEBDI, trEBDI i , τ ), In-

orm_t(mEBDI, trEBDI i , τ ), Activate(mEBDI, trEBDI i , τ ), Sus-

end(mEBDI, trEBDI i , τ ), Track(face, trEBDI i , τ ), Validate(face,

rEBDI i , τ ), Re-track(face i , trEBDI i , τ ), Update_m(mEBDI, face i ,

) and Update_t(face i , trEBDI i , τ ). The interpretations of the

redicates are: 

– Detect(mEBDI, face i , τ ) – the mEBDI has detected a face i during

interval τ ; 

– Create(mEBDI, trEBDI i , τ ) – the mEBDI creates a trEBDI i agent

during interval τ ; 

– Inform_t(mEBDI, trEBDI i , τ ) – the mEBDI agent informs a

trEBDI i agent about face data during τ , i.e. it sends information

about a face to the trEBDI agent; 

– Inform_m(mEBDI, trEBDI i , τ ) – a trEBDI i agent informs the

mEBDI agent about face data during τ , i.e. it sends elements

of face data (tracklet) to the mEBDI agent; 

– Activate(mEBDI, trEBDI i , τ ) – the mEBDI agent activates a

trEBDI i agent during τ ; 

– Suspend(mEBDI, trEBDI i , τ ) – a trEBDI agent is suspended dur-

ing τ and the mEBDI agent is informed 

– Track(face i , trEBDI i , τ ) – a face i is tracked by trEBDI i during τ ; 

– Validate(face i , trEBDI i , τ ) – a trEBDI i agent has evaluated a

tracker confidence value of a face i during τ and the degree of

belief is above the threshold; 

– Re-track(face i , trEBDI i , τ ) – a face i is tracked again by a trEBDI i 
agent during τ ; 

– Update_m(mEBDI, face i , τ ) – the mEBDI agent updates tracklets

during τ , obtained by a trEBDI i agent for a successfully tracked

face i ; and 

– Update_t(face i , trEBDI i , τ ) – the trEBDI i agent updates a tracklet

during τ for a successfully tracked face i . 

The 4-place predicates are: Assign(mEBDI, face i , trEBDI i , τ ),

ost(mEBDI, face i , trEBDI i , τ ), and Redetect(mEBDI, face i , trEBDI i ,

). The interpretations are: 

– Assign(mEBDI, face i , trEBDI i , τ ) – the mEBDI agent assigns a

face i to trEBDI i agent during τ ; 

– Lost(mEBDI, face i , trEBDI i , τ ) – the mEBDI agent has been in-

formed that the trEBDI i agent lost the tracked face i during τ ; 

– Redetect(mEBDI, face i , trEBDI i , τ ) – the mEBDI agent has rede-

tected during τ the face i that had been assigned to the trEBDI i 
agent and that had been lost. 

The 6-place predicates are Face_data_d(face i , fp, fs, dc, fl, τ ) and

ace_data_t(face , fp, fs, tc, fl, τ ). They relate a face (or a face
i i 



L. Maleš, D. Mar ̌ceti ́c and S. Ribari ́c / Expert Systems With Applications 126 (2019) 246–264 255 

i  

t  

S

 

t  

c  

fi

d  

c  

w

ϕ

 

a  

i  

l  

a

 

t  

a  

i  

(

 

o  

t  

o  

a

E  

l  

f  

f

ψ

E  

d  

D

E  

t  

I

E

h  

a  

a  

d  

f

 

 

 

5

r

 

b  

r

Fig. 4. Intentions of the mEBDI agent during initialization and corresponding time 

intervals. 
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mage patch) with a position, size, detector confidence value or

racker confidence value, and a face identity label during τ (see

ection 3.2 ). 

The mEBDI agent obtains a detector confidence value dc from

he CNN detector, while the trEBDI agent calculates the tracker

onfidence value tc. Both types of agents include only own con-

dence values at the Face_data predicate. 

For example, the sentence “The agent mEBDI has detected face 1 
uring interval τ at position fp (face 1 ), with size fs (face 1 ), detector

onfidence value dc (face 1 ), and a face identity label fl(face 1 )” is

ritten as the formula: 

 : = Detect ( mEBDI , fac e 1 , τ ) ∧ Face _ data _ d ( fac e 1 , fp ( fac e 1 ) , 

fs ( fac e 1 ) , dc ( fac e 1 ) , fl( fac e 1 ) , τ ) . 

The content of the mEBDI agent’s beliefs, desires and intentions

re the relations between it and the faces (the set R 1 ) and between

t and the trEBDI agents (the set R 3 ). The mEBDI agent also be-

ieves, desires and intends to achieve relations among it, the faces

nd the trEBDI agents (the set R 2 ). 

The trEBDI agent believes, desires and intends to achieve rela-

ions between it and the mEBDI agent (the set R 3 ) and between it

nd a face (the set R 4 ). The trEBDI agent also believes, desires and

ntends to achieve relations among it, the mEBDI agent and a face

the set R 2 ). 

The mEBDI agent and the trEBDI agent believe in the temporal

rder (the set R T ) and in the relation between a face and its posi-

ion in a video frame, its size and the value of detector confidence

r tracker confidence. Both agents have no desires or intentions to

chieve the temporal order and the information about face data. 

xample 1. The formula for the sentence “The mEBDI agent be-

ieves that it has detected a face during interval τ at position

p(face), with size fs(face), detector confidence value dc(face) and

ace identity label fl(face)” is written as: 

 : = BEL ( Detect ( mEBDI , face , τ ) ∧ Face _ data _ d( face , fp ( face ) , 

fs ( face ) , dc ( face ) , fl( face ) , τ )) . 

xample 2. The formula for the sentence “The trEBDI i agent

esires to track face i during interval τ ” is written as ψ : =
ES ( Track(face i , trEBDI i , τ )). 

xample 3. The formula for the sentence “The mEBDI agent in-

ends to assign face i to trEBDI i during interval τ ” is written as ψ : =
NT ( Assign(mEBDI, face i , trEBDI i , τ )). 

xample 4. “The mEBDI agent believes that face i which trEBDI i 
as lost is redetected during τ and believes in the information

bout the face i position, size and a detector confidence value. It

lso believes that interval τ 1 meets interval τ 2 . The mEBDI agent

esires to inform the trEBDI i agent during τ 4 and intends to in-

orm trEBDI i during τ 5 about its beliefs”. The rule is written as 

– BEL ( Redetect(mEBDI, face 4 , trEBDI 4 , τ 4 ) ∧ Face_data_d(face 4 ,

fp(face 1 ), fs(face 4 ), dc(face 4 ), fl(face 1 ), τ 4 ) ∧ Meets( τ 4 , τ 5 ) ) ∧
DES ( Inform_t(mEBDI, trEBDI 4 , τ 4 ) → INT (Inform(mEBDI, trEBDI 4 ,

τ 5 ) . 

. Functions of mEBDI and trEBDI agents – initialization, 

egular tracking, and exception 

In the process of multi-face tracking, the proposed multi-agent-

ased system can be in the following main states: initialization,

egular tracking, and exception. 
.1. Initialization of the multi-face tracking system 

For the first frame of the video sequences ( j = 0), all trEBDI

gents are inactive. The manager agent mEBDI performs the fol-

owing steps: 

1. Face detection – activates the CNN-based face detector; 

2. Elimination of false positive face detections – activates the

autonomy-oriented entities (AOEs); 

3. Assignment of a face identity label to each face image patch; 

4. Initialization of the trEBDI agents: 

– creates trEDBI agents; 

– assigns each face to one of the trEBDI agents; 

– sends a message with information about a face image patch

(face identity label, position and size of a face image patch)

to the created trEBDI agents; 

– activates trEDBI agents (starts tracking). 

Note that if there is no face detection in the first frame of a

ideo sequence, then step 1 above is repeated on the next frame(s)

until a face or faces are detected. 

The initialization at a frame j is specified by means of logical

ules as follows. 

mEDBI agent: 

–
n ∧ 

i =1 
BEL ( Detect(mEBDI, face i , τ

j 
1 
) ∧ ¬ Assign(mEBDI, face i , 

trEBDI i , τ
j 
1 
)) ∧ Face_data_d(face i , fp(face i ), fs(face i ), dc(face i ), 

fl(face i ), τ
j 
1 
)) ∧ Meets( τ j 

1 
, τ j 

2 
) ) ∧ DES ( Create(mEBDI, trEBDI i , 

τ j 
1 
) ) → INT ( Create(mEBDI, trEBDI i , τ

j 
2 
) ) ; 

–
n ∧ 

i =1 
BEL ( Create(mEBDI, trEBDI i , τ

j 
2 
) ∧ Finishes( t 

j 
2 
, τ j 

2 
) ) ∧ 

DES ( Assign(mEBDI, face i , trEBDI i , τ
j 
2 
) ) → INT ( Assign(mEBDI, 

face i , trEBDI i , t 
j 
2 
) ) ; 

–
n ∧ 

i =1 
BEL ( Assign(mEBDI, face i , trEBDI i , t 

j 
2 
) ∧ Face_data_d(face i , 

fp(face i ), fs(face i ), dc(face i ), fl(face i ), τ
j 
1 
) ∧ Meets( τ j 

1 
, τ j 

2 
) ∧ 

Finishes( t 
j 
2 
, τ j 

2 
) ∧ Meets( τ j 

2 
, τ j 

3 
) ) ∧ DES ( Inform_t(mEBDI, trEBDI i , 

t 
j 
2 
) → INT ( Inform_t(mEBDI, trEBDI i , τ

j 
3 
) ) ; 

–
n ∧ 

i =1 
BEL ( Inform_t(mEBDI, trEBDI i , τ

j 
3 
) ∧ Meets( τ j 

3 
, τ j 

4 
)) ∧ 

DES (Activate(mEBDI, trEBDI i , τ
j 
3 
) ) → INT ( Activate(mEBDI, 

trEBDI i , τ
j 
4 
) ) . 

here i = 1, 2, …, n is the index of the detected face image patch,

nd n is the total number of detected faces. 

The intentions of the mEBDI agent during initialization of the

ulti-face tracking system and corresponding time intervals τ j 

k 
;

 = 1, …, 4, are shown in Fig. 4 . 

.2. Regular tracking 

Each active trEDBI agent performs the following steps during

egular tracking: 
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Fig. 5. Intentions of the trEBDI agents during regular tracking and corresponding 

time intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Intentions of the trEBDI agents when they lose assigned faces and the cor- 

responding time intervals. 
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1. Activation of the DSST tracker for the current frame – data ex-

traction (a new position and size of a face image patch), and

determination of a tracker confidence value; 

2. Evaluation of the degree of belief (based on the tracker con-

fidence value) that the face image patch contains the tracked

face – the degree of belief is above the threshold for regular

tracking; 

3. Storing the new elements of a tracklet in its trajectory memory

(trTM) – a new position and size of the tracked face; 

4. Message sending – a trEDBI sends a message with new ele-

ments of a tracklet to the mEDBI agent, and it remains in an

active state. 

The mEBDI agent waits for messages from active trEBDI agents

and updates the corresponding tracklets stored in its trajectory

memory (mTM). 

The description of the above steps at the logical level is as fol-

lows : 

– BEL ( Track(face i , trEBDI i , τ
j 
1 
) ∧ Face_data_t(face i , fp(face i ), 

fs(face i ), tc(face i ), fl(face i ), τ
j 
1 
) ∧ Meets( τ j 

1 
, τ j 

2 
) ) ∧ 

DES ( Track(face i , trEBDI i , τ
j 
1 
) ) → INT ( Validate(face i , trEBDI i , τ

j 
2 
) ) ; 

– BEL ( Validate(face i , trEBDI i , t 
j 
2 
) ∧ Face_data_t(face i , fp(face i ), 

fs(face i ), tc(face i ), fl(face i ), τ
j 
1 
) ∧ Meets( τ j 

1 
, τ j 

2 
) ∧ Finishes( t 

j 
2 
, τ j 

2 
) 

∧ Meets( τ j 
2 
, τ j 

3 
) ) ∧ DES ( Update_t(face i , trEBDI i , 

t 
j 
2 
) ) → INT (Update_t ( face i , trEBDI i , τ

j 
3 
) ) ; 

– BEL ( Validate(face i , trEBDI i , t 
j 
2 
) ∧ Face_data_t(face i , fp(face i ), 

fs(face i ), tc(face i ), fl(face i ), τ
j 
1 
) ∧ Meets( τ j 

1 
, τ j 

2 
) ∧ Finishes( t 

j 
2 
, τ j 

2 
) 

∧ Meets( τ j 
2 
, τ j 

3 
) ∧ Meets( τ j 

3 
, τ j 

4 
) ) ∧ DES ( Inform_m(mEBDI, 

trEBDI i , t 
j 
2 
) ) → INT ( Inform_m(mEBDI, trEBDI i , τ

j 
4 
) ) . 

The intentions of the trEBDI agents during regular tracking and

corresponding time intervals τ j 

k 
; k = 1, …, 4, are shown in Fig. 5 . 

5.3. Exceptions – lost faces, new faces, re-detection 

Activity of the trEBDI agent: 

Case 1. An active trEDBI agent has lost its tracked face in the cur-

rent frame 

The first two steps of regular tracking described in

Section 5.2 are performed. 

1. The trEBDI agent changes its state from an active to suspended

state and it informs the mEBDI agent that its tracked face is lost

(i.e. the value of tracker confidence is below the threshold). The

description of the above-described step at the logical level is as

follows : 

– BEL ( Track(face i , trEBDI i , τ
j 
1 
) ∧ Face_data_t(face i , fp(face i ), 

fs(face i ), tc(face i ), fl(face i ), τ
j 
1 
) ∧ Meets( τ j 

1 
, τ j 

2 
) ) ∧ 

DES ( Track(face i , trEBDI i , τ
j 
1 
) ) → INT ( Validate(face i , trEBDI i , 

τ j 
2 
) ) ; 

– BEL ( ¬ Validate (face i , trEBDI i , t 
j 
2 
) ∧ Face_data_t(face i , 

fp(face i ), fs(face i ), tc(face i ), fl(face i ), τ
j 
1 
) ∧ Meets( τ j 

1 
, τ j 

2 
) ∧ 

Finishes( t 
j 
2 
, τ j 

2 
) ∧ Meets( τ j 

2 
, τ j 

3 
) ) ∧ DES ( Suspend(mEBDI, 

trEBDI i , t 
j 
2 
) ) → INT (Suspend ( mEBDI, trEBDI i , τ

j 
3 
) ) ; 
– BEL ( ¬ Validate (face i , trEBDI i , t 
j 
2 
) ∧ Lost(mEBDI, face i , trEBDI i ,

t 
j 
2 
) ∧ Face_data_t(face i , fp(face i ), fs(face i ), tc(face i ), fl(face i ), 

τ j 
1 
) ∧ Meets( τ j 

1 
, τ j 

2 
) ∧ Finishes( t 

j 
2 
, τ j 

2 
) ∧ Meets( τ j 

2 
, τ j 

3 
) ∧ 

Meets( τ j 
3 
, τ j 

4 
) ) ∧ DES ( Redetect(mEBDI, face i , trEBDI i , 

t 
j 
2 
) ) → INT ( Inform_m(mEBDI, trEBDI i , τ

j 
4 
) ) . 

(this message invokes the first six steps performed by the

mEBDI agent; see Activity of the mEBDI agent). 

The intentions of the trEBDI agents when they lose assigned

faces and the corresponding time intervals τ j 

k 
; k = 1,…, 4, are

shown in Fig. 6 . 

2. Suspended trEBDI agents wait for the mEBDI agent message –

containing information about all unresolved faces detected in

the current frame. Note that a message with no unresolved

faces is also possible. 

3. The trEBDI agent determines a degree of belief based on a

tracker confidence value for all unresolved faces. 

4. The trEBDI sends a message with a tracker confidence value for

all unresolved faces to the mEDBI agent 

(this message invokes step 7 performed by the mEBDI agent;

see Activity of the mEBDI agent). 

5. Waiting for the mEBDI agent’s message – containing informa-

tion about the assignment of a face identity label. 

6. Resolution of identity face label assignment. Based on the re-

ceived message, two situations are possible: 

(i) the trEBDI agent continues to track its assigned face; 

(ii) the trEBDI agent remains in a suspended state (i.e. no unre-

solved face is assigned to it). The trEBDI agent waits for the

mEBDI agent’s message at the next frame (go to step 2). 

ase 2. A trEDBI agent has lost its face in some previous frame 

Typical situations of Case 2 are face tracking under short-

nd/or long-term face full occlusions ( Soldi ́c, Mar ̌ceti ́c, Mara ̌ci ́c, &

ibari ́c, 2017 ). 

In Case 2, the procedure described in Case 1 is performed, ex-

luding the change from the active to the suspended state of a

rEBDI agent in step 1. 

Activity of the mEBDI agent 

The mEBDI performs the following steps for lost faces, new

aces, and redetection. 

Receiving messages from trEBDI agents that have lost a tracked

ace – each of the suspended trEDBI agents sends a message. 

The mEBDI agent is informed that the trEBDI agent has lost

 face. The description of the above-described step at the logical

evel is as follows : 

– BEL ( Lost(mEBDI, face i , trEBDI i , t 
j+1 
0 

) ∧ Face_data_t(face i , 

fp(face i ), fs(face i ), tc(face i ), fl(face i ), τ
j 
1 
) ∧ Meets( τ j 

1 
, τ j 

2 
) ∧ 

Meets( τ j 
2 
, τ j 

3 
) ∧ Meets( τ j 

3 
, τ j 

4 
) ∧ Meets( τ j 

4 
, τ j+1 

1 
) ∧ 

Starts(( t 
j+1 
0 

, τ j+1 
1 

) ) ∧ DES ( Redetect(mEBDI, face i , trEBDI i , 

t 
j+1 
0 

) ) → INT ( Redetect(mEBDI, face i , trEBDI i , τ
j+1 
1 

) ) 



L. Maleš, D. Mar ̌ceti ́c and S. Ribari ́c / Expert Systems With Applications 126 (2019) 246–264 257 

Table 2 

Architecture of the CNN for face detection and localization. 

Stage Layer Kernels Number of parameters 

No. No. Type Number Size Stride 

1 1 con 16 5 × 5 × 3 2 × 2 16 × 5 × 5 × 3 = 1200 

2 relu – – – 0 

2 3 con 32 5 × 5 × 16 2 × 2 32 × 5 × 5 × 16 = 12,800 

4 relu – – – 0 

3 5 con 32 5 × 5 × 32 2 × 2 32 × 5 × 5 × 32 = 25,600 

6 relu – – – 0 

4 7 con 45 5 × 5 × 32 1 × 1 45 × 5 × 5 × 32 = 36,0 0 0 

8 relu – – – 0 

5 9 con 45 5 × 5 × 45 1 × 1 45 × 5 × 5 × 45 = 50,625 

10 relu – – – 0 

6 11 con 45 5 × 5 × 45 1 × 1 45 × 5 × 5 × 45 = 50,625 

12 relu – – – 0 

7 13 con 1 9 × 9 × 45 1 × 1 19 × 9 × 45 = 3645 

14 MMOD – – – 0 

Total number of parameters 180,495 
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1–3. These steps are the same as the first three steps in the ini-

tialization of the multi-face tracking system (see Section 5.1 ).

4. Unresolved faces determination – identity labelling is per-

formed based on intersection over union (IoU) (or Jaccard

similarity coefficient) between areas belonging to detected

faces by the CNN detector and areas of faces tracked by ac-

tive trEBDI agents in the previous frame. These areas are

stored in a trajectory memory mTM of the mEBDI. Remain-

ing face detections with an unassigned identity label are de-

clared as unresolved. 

5. Message sending – the mEBDI agent sends a message to all

suspended trEDBI agents, containing information on all un-

resolved faces detected in the current frame 

(this message invokes steps 3 and 4 performed by the trEBDI

agent; see activity of the trEBDI agent). 

6. Waiting for the trEBDI agent’s messages – each of the sus-

pended trEDBI agents sends a message with degrees of belief

for all unresolved faces to the mEDBI agent. 

7. Assignment of a face identity label – this step is performed

based on all received PSR scores above the threshold, by us-

ing the Hungarian algorithm ( Munkres, 1957 ). 

8. Message sending – the mEDBI sends a message containing

information about the assignment of a face identity label.

Two types of messages are possible: one of the unresolved

faces is or is not assigned to a trEBDI agent 

(this message invokes step 5 performed by the trEBDI agent;

see Activity of the trEBDI agent). 

9. Initialization of new trEBDI agents – for all remaining unre-

solved faces (i.e., new faces), an initialization procedure de-

scribed in step 4 of the initialization of the multi-face track-

ing system (see Section 5.1 ) is performed. 

Note that these nine steps are also periodically performed (e.g.,

very 5 frames). This enables faces that newly appear in a frame

o be detected and tracked. 

For all the above steps, the descriptions at the logical level with

ormulas are developed, but due to space limitations only repre-

entative steps are given in this paper. 

. Extensions of the BDI agents – detection, elimination of 

alse positive detections, face loss detection 

A description of the implementation details related to the ex-

ension components of the mEBDI agent and a trEBDI agent is

iven in this section. 
.1. Description of the implementation details related to the 

xtensions of mEBDI – the detection and elimination of false positive 

etections 

The detection module, as an extension of the mEBDI agent, is

ased on a deep convolutional neural network (CNN). There are

wo main reasons for selecting the deep CNN for face detection

nd localization: (i) robustness (suitable for unconstrained condi-

ions, low false negative and positive detections); and (ii) the CNN

etector also returns the value of a confidence level, called detec-

or confidence dc, in a range from 0 to 1, which expresses belief

hat the image patch at a specific position contains a face. The

NN detector architecture is designed for face detection and lo-

alization. The problem of face localization is solved based on the

ombination of a sliding window and max-margin object detec-

ion (MMOD) ( King, 2015 ). The CNN consists of seven stages im-

lemented as convolutional layers with a number of convolutional

ernels all having the same size as the first two dimensions, i.e.

5 × 5), but it does not have pooling layers. Architecture details of

he CNN for face detection and localization are given in Table 2 .

n input to the CNN detector is a frame with resolution m × n pix-

ls. A resolution image pyramid consisting of six levels is created

rom the frame to handle the scale invariance problem. Deep CNN

rchitecture is implemented by using the Dlib library ( King, 2009 ).

A dataset of 6975 faces ( Dlib C ++ Library ) obtained from Ima-

eNet, AFLW, Pascal VOC, the VGG dataset, WIDER, and FaceScrub

as used for learning the 180,495 parameters of the CNN. 

Fig. 7 depicts the two examples of face detections. 

The corresponding values of the terms for Face_data_d(face i ,

p(face i ), fs(face i ), dc(face i ), fl(face i ), τ ) predicates are: 

T-ara video frame 3287: 

Face_data_d(face 1 , fp(face 1 ) = (211, 231), fs(face 1 ) = 64, 

dc(face 1 ) = 0.90, fl(face 1 ) = 1, [3287/25, 3288/25]); 

Face_data_d(face 2 , fp(face 2 ) = (391, 200), fs(face 2 ) = 78, 

dc(face 2 ) = 0.95, fl(face 2 ) = 2, [3287/25, 3288/25]); …, 

Face_data_d(face 6 , fp(face 6 ) = (906, 186), fs(face 6 ) = 76, 

dc(face 6 ) = 0.92, fl(face 6 ) = 6, [3287/25, 3288/25]). 

Girls Aloud video frame 2288 : 

Face_data_d(face 1 , fp(face 1 ) = (153, 116), fs(face 1 ) = 80, 

dc(face 1 ) = 0.87, fl(face 1 ) = 1, [2288/25, 2289/25]); 

Face_data_d(face 2 , fp(face 2 ) = (277, 106), fs(face 2 ) = 80, 

dc(face 2 ) = 0.83, fl(face 2 ) = 2, [2288/25, 2289/25]); …, 

Face_data_d(face 5 , fp(face 5 ) = (730, 106), fs(face 5 ) = 80, 

dc(face ) = 0.78, fl(face ) = 5, [2288/25, 2289/25]). 
5 5 
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Fig. 7. Examples of face detections; (a) T-ara; (b) Girls Aloud YouTube videos. 
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Note that a position (x, y) for fp(face i ) corresponds to coordi-

nates of the upper left corner of an image patch. 

Elimination of false face detections is performed using a set of

autonomy-oriented entities / agents (AOEs). 

The AOEs are randomly distributed in the face image patches

with detector confidence level values (obtained from the CNN de-

tector) which are below the prescribed threshold to detect and

eliminate image patches with false positive face detections ( Kip ̌ci ́c

& Ribari ́c, 2005 ). The agent a i ε AOEs, i = 1, 2, …, n is described by

the 4-tuple: 

a i = ( A , p , fid , a ) , 

where: 

– A is the age of an agent. The initial age of an agent is zero. An

agent becomes older (its age increases by one) by diffusing or

moving to another pixel in the image patch; 

– p stands for the position of an agent in the image patch. The

position is represented by pixel coordinates (x, y); 

– fid is the family identifier, which indicates an agent’s family

membership. During initialization, every initial agent is a seed

of a family, and it has a unique fid; 

– a is the activity that indicates whether the agent is still search-

ing for skin-like pixels. 

Agents becomes inactive after breeding or by dying. 

An agent shows the following types of behaviour: (i) diffusion –

an agent diffuses (or moves)when it does not find a skin-like pixel

in its current position. By diffusing, an agent changes its internal

states: its position and age; (ii) Breeding – an agent breeds if it

encounters a skin-like pixel at its current location. By breeding, it

creates new agents in its neighbourhood that belong to its fam-

ily. After breeding, the agent deactivates itself; and (iii) Dying – an

agent dies when its age exceeds the maximum age determined for

all agents. 

AOE agents search image pixels that have skin-colour values de-

fined based on combined HSI and RGB models, and form face-like

regions. Based on a compound decision function composed of eval-

uation functions for the characteristics of face-like regions ( Kip ̌ci ́c

& Ribari ́c, 2005 ) that include size, fullness, orientation, and a reg-

ularity characteristic estimated on the height-width aspect-ratio, a

final decision (the elimination of the image patch without a face)

is made. 

The AOE agent-based search procedure for skin pixels is formal-

ized as follows: 

The search procedure can be divided into four phases ( Kip ̌ci ́c &

Ribari ́c, 2005 ). 

6.1.1. Initial agent distribution 

The agents are randomly distributed over the face image patch

(vague face region candidates). 
.1.2. Agent lifetime 

Initialized agents in each vague face region start their lifecycle

s follows: 

repeat 

for each agent 

if agent is active 

if agent is beyond the region edge 

agent dies 

else 

if agent is on skin pixel 

mark pixel 

add agent to family statistic 

agent breeds 

else if agent_age > maximum age 

agent dies 

else agent diffuses 

next agent 

while number of agents > 0 

To determine a skin pixel, a hybrid HSI-RGB color model is used

ith the following parameters: 0 ≤ H ≤ 50 and 340 ≥ H ≤ 360; 0.20

S ≤ 0.7 and R > 160. 

The initial number of agents and their maximum age is experi-

entally determined on a set of training regions with and without

ace. 

.1.3. Post-processing 

When all the agents reach the end of their lifetimes, the re-

ult of their activities are areas that consist of skin-like pixels in

he vague face region candidates. The areas are subjected to post-

rocessing which consists of the elimination of areas smaller than

he predefined threshold and/or grouping neighborhood areas with

 “weak” border. 

During the agents’ lifetime, the following statistics were gath-

red for each vague face region candidate: number of skin-like pix-

ls, the average value of the H, S and R, second moments, the cen-

re of the area, and the rectangular frame containing the area with

kin-like pixels. 

.1.4. Decision 

The final decision about false positive detection is based on the

ogical function composed of the conjunction of five logical evalua-

ion functions based on the above-mentioned statistics and the set

f threshold values which are experimentally determined ( Kip ̌ci ́c &

ibari ́c, 2005 ). If the value of the composed logical function is zero,

his means that the vague face region candidate is a false positive

etection. 

Fig. 8 illustrates examples of false positive face CNN-based de-

ections which are eliminated by the autonomy-oriented agents. 

The trajectory memory mTM stores all trajectories of all tracked

aces. The trajectory contains a face position, size, tracker confi-

ence value, and time stamp for each face in all frames in the

ideo. 
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Fig. 8. Examples of false positive face CNN-based detections. 

Fig. 9. Illustration of the PSR value = 52.43; (MaxPeak = 0.5887; Mean = 0.0014; Std = 0.0112) when a face is detected. The tracker confidence value tc is 0.655, the maximum 

value of the PSR is 80; (a) a face image patch (red square); (b) 2D representation of position correlation responses with a denoted peak with its surrounding area and 

sidelobe; (c) 3D representation of position correlation responses. 
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.2. Description of the implementation details related to the 

xtensions of trEBDI – tracking and face loss 

The basic component of the tracking module, as an extension of

he trEBDI agent, is the Discriminative Scale Space Tracking (DSST)

odule ( Danelljan et al., 2017 ). There are three main reasons for

electing the DSST for face tracking: (i) suitability for online and

eal-time object tracking; (ii) robustness to scale and space varia-

ions of the visual appearance of the tracked object; and (iii) the

bility to detect tracked object loss based on a value of a PSR ob-

ained from the response of the position correlation filter. 

A DSST tracker during the initialization procedure uses the po-

ition and size of a face image patch (received from the mEBDI)

o learn the visual appearance and scale of the tracked faces (both

tored in the visual appearance memory (VAM)). Two multichannel

orrelation filters of HOG features are calculated from a face image

atch independently for position and scale. These filters are trans-

ormed into the Fourier domain to avoid a computationally inten-

ive exhaustive search of a position-scale space. The circular cor-

elation score is efficiently obtained in the Fourier domain which

nables real time performance. Note that the scale correlation filter

s obtained by using the sampling of the image patch at 33 differ-

nt scales (from 0.7284 to 1.3728, with step 1.02 regarding the size

f the initial image patch). 

In the process of regular tracking, the DSST tracker

 Danelljan et al., 2017 ) first searches for an optimal target

osition using the discriminative position correlation filter, and

hen applies the scale correlation filters to find an optimal target

cale. The position and scale correlation filters are updated online

or each consecutive frame. 

The steps performed by the DSST tracker are described in more

etail as follows ( Danelljan et al., 2017 ): for each consecutive

rame, an image patch centred on the face position estimated in

he previous frame is selected as a candidate for a face position
earch. For the image patch, a 28-channel position correlation fil-

er is obtained, as described for the initialization. Then a new tar-

et position is estimated by performing a circular correlation be-

ween the 28-channel position correlation filter from the previous

rame and the features obtained from the image patch in the cur-

ent frame. The new position of the target in the current frame is

etermined based on the maximal correlation response. Patches at

3 scales centred on the target position estimated in the previous

tep are taken from the current frame. Then, a new target scale is

stimated by performing a circular correlation between the scale

orrelation filter and the features obtained as described above. The

ew scale of the target in the current frame is determined based

n the maximal correlation response which corresponds to one of

3 scales. 

Position and scale correlation filters are updated online for po-

ition and scale target estimation in the next frame. Both filters are

pdated separately based on the defined learning rate. 

A tracker confidence value, which is used for face loss detection,

s determined by using a normalized PSR. 

The peak strength called the PSR is obtained from the response

f the position correlation filter ( Bolme et al., 2010 ). The position

orrelation response is divided into two areas ( Figs. 9 and 10 ): the

eak with its surrounding area and the area called the sidelobe.

he square area surrounding the peak has a square side that is

2% of the size of the position correlation response (which is rep-

esented as a 2D square matrix). The sidelobe is the remaining area

hat excludes the area surrounding the peak. The value of the PSR

s computed by the following formula: 

SR = 

( MaxP eak − μ) 

σ
, 

here MaxPeak is the maximum peak value, and the mean value

and standard deviation σ are calculated from the sidelobe

f the position correlation response. The value of the PSR for
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Fig. 10. Illustration of the PSR value = 8, 56 ( MaxPeak = 0.142; Mean = 0.005; Std = 0.016) when a face is lost. The tracker confidence value tc = PSR / maxPSR = 0.107: tc < 

threshold = 0.125 – a face is lost; (a) a face image patch (red square); (b) 2D representation of position correlation responses with denoted peak with its surrounding area 

and sidelobe; (c) 3D representation of position correlation responses. 

Fig. 11. An illustration of face tracking: (a) Apink; (b) Westlife YouTube videos. 
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so-called good tracking (i.e. manual annotation) is typically be-

tween 20 and 60. In the case of tracking failure, the PSR is less

than 10 ( Bolme et al., 2010 ). By dividing the PSR value obtained for

the current face image patch with its maximum value determined

by using a ground truth face annotation for the set of experimen-

tal video sequences, the tracker confidence value is obtained. To

obtain a tracker confidence value tc, the actual value of the PSR is

divided by the maximal value of the PSR which is experimentally

determined. 

Figs. 9 and 10 illustrate the PSR values for different tracked con-

fidence values. 

Fig. 11 illustrates the result of face tracking obtained by corre-

sponding trEBDI agents. 

The corresponding values of terms for Face_data_t(face i ,

fp(face i ), fs(face i ), tc(face i ), fl(face i ), τ ) predicates are: 

Apink video frame 968: 

Face_data_t(face 1 , fp(face 1 ) = (73, 160), fs(face 1 ) = 131, 

tc(face 1 ) = 0.28, fl(face 1 ) = 1, [968/25, 969/25]); 

Face_data_t(face 2 , fp(face 2 ) = (268, 201), fs(face 2 ) = 115, 

tc(face 2 ) = 0.64, fl(face 2 ) = 2, [968/25, 969/25]); …; 

Face_data_t(face 6 , fp(face 6 ) = (1096, 206), fs(face 6 ) = 122, 

tc(face 6 ) = 0.79, fl(face 6 ) = 6, [968/25, 969/25]). 

Westlife video frame 2391: 

Face_data_t(face 1 , fp(face 1 ) = (183, 248), fs(face 1 ) = 71, 

tc(face 1 ) = 0.47, fl(face 1 ) = 1, [2391/25, 2392/25]); 

Face_data_t(face 2 , fp(face 2 ) = (502, 209), fs(face 2 ) = 70, 

tc(face 2 ) = 0.46, fl(face 2 ) = 2, [2391/25, 2392/25]); …; 

Face_data_t(face 4 , fp(face 4 ) = (825, 248), fs(face 4 ) = 122, 
tc(face 4 ) = 0.29, fl(face 4 ) = 4, [2391/25, 2392/25]) d  
. Experimental setup and preliminary results 

The demonstration of the proposed approach based on a multi-

gent dynamic system for robust multi-face tracking was per-

ormed on a subset of YouTube music videos ( Zhang, Gong, et al.,

016 ). The test subset of the YouTube music video sequences con-

ists of five videos (T-ara, Hello Bubble, Apink, Westlife and Girls

loud) that are challenging to track due to large visual differences

aused by face appearance variations (changes in pose, size, make-

p, and illumination), and/or rapid camera motion. The remaining

hree videos (Pussycat Dolls, Bruno Mars, and Darling) are used to

etermine and adjust the set of parameters for proper system op-

ration. These three videos are excluded from the evaluation of the

ystem. 

The parameters have the following values: the tracker confi-

ence threshold is 0.125; the PSR score threshold is 10; the inter-

ection over union (IoU) for identity labelling is 0.5; new faces are

eriodically detected every 5 frames; the face detection confidence

hreshold is 0.72; the maximum age for all AOEs is 8; the scale

yramid with 33 levels is spaced at 1.02 up to 1.37 down to 0.73

elative to the original image patch size. 

In the experiments for this test subset, we used manual shot

hange labelling to divide the input videos into non-overlapping

hots instead of the method used in ( Zhang, Gong, et al., 2016 ).

ote that for every shot a tracking process is restarted. 

The qualitative results of the proposed multi-face tracking sys-

em are illustrated in Fig. 12 . 

Fig. 13 illustrates examples of the ground truth of visual appear-

nces and the corresponding visual appearances of tracked faces

n an Apink video sequence with perfect tracking results. Each col-

mn corresponds to one frame. Each row consists of two sub-rows:

he upper sub-row depicts the ground truth and the lower sub-row

epicts the corresponding tracked face. Fig. 14 illustrates examples
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Fig. 12. The qualitative results of the proposed multi-face tracking system in 1–5 rows are T-ara, Hello Bubble, Apink, Westlife, Girls Aloud, respectively. 

Fig. 13. Examples of ground-truth visual appearances and the corresponding visual appearances of tracked faces for an Apink video. 
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Fig. 14. Examples of ground-truth visual appearances and the corresponding visual appearances of tracked faces for a T-ara video. 

Table 3 

Quantitative results of the proposed architecture for multi-face tracking. 

Video \ Metric: FP FN GT IDS MOTP MOTA 

T-ara (4547 frames) 1262 2014 14,321 18 0.77 0.77 

Hello Bubble (3764 frames) 447 483 5169 5 0.76 0.82 

Apink (5275 frames) 405 474 7177 6 0.77 0.88 

Westlife (5736 frames) 1608 1841 11,289 4 0.68 0.69 

Girls Aloud (5531 frames) 2427 2711 16,048 23 0.75 0.68 
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of the ground truth of visual appearances and the corresponding

visual appearances of tracked faces in a T-ara video sequence with

false positive and false negative tracking results. A white box in

the first sub-row of a row denotes that a face is not present in

the frame, while a white box in the second sub-row means that a

tracker is not tracking a face in a frame. Note that poor ground-

truth annotations for faces in a few frames have resulted in track-

ing failures for the last three faces. 

The preliminary quantitative results are expressed by the test-

ing metrics ( Kasturi et al., 2009 ): MOTA ( Multiple Object Track-

ing Accuracy ), MOTP ( Multiple Object Tracking Precision ), and IDS

( Identity Switch ). The MOTA measure combines false negatives (FN),

false positives (FP), mismatches or identity switches (IDS), and

ground truth (GT) obtained from each frame from j = 0 to N -1 ,

where N is the total number of frames in a video sequence: 

MOTA = 1 −
∑ N−1 

j=0 (F N j + F P j + ID S j ) 
∑ N−1 

j=0 G T j 

The MOTP is the average dissimilarity between all true positives

and their corresponding ground truth targets (faces). For bounding

box overlap, MOTP is computed as 

MOTP = 

∑ M 

n =1 

∑ N−1 
j=0 d n, j 

∑ N−1 
j=0 c j 

, 

where M denotes the number of different objects (faces) in the

entire video sequence, N is the number of frames in a video se-

quence, d n,j is the bounding box overlap of tracked face n with its
ssigned ground truth face in the frame j , and c j denotes the num-

er of visible objects (faces) in the frame j. 

IDS ( Identity switches ) counts how many switches in object la-

elling occurred during the tracking when compared to the ground

ruth. 

The quantitative results of the experiments are given in Table 3 .

The obtained experimental results ( Table 3 ) show that the

erformance of the proposed system is comparable with state-

f-the-art performance Zhang, Gong, et al. (2016) and Lin and

ung (2018) . The experimental outcomes show that the proposed

ADS system architecture is capable of multi-face tracking in un-

onstrained videos. 

Note that the quantitative results in Table 3 are mainly depen-

ent on the characteristics of the components of the mEBDI and

rEBDI agents: a CNN-based face detector, the efficiency of the AOE

gents and the DSST tracker, but also dependent on the testing

rocedure. 

Better results can be achieved by using more advanced meth-

ds, for example a deep residual CNN-based approach ( He, Zhang,

en, & Sun, 2016 ), Siamese network and/or triplet network-based

pproaches ( Zhang, Gong, et al., 2016 ), an approach based on a so-

alled prior-less framework and co-occurrence model that can con-

inue tracking partially visible multiple faces ( Lin & Hung, 2018 ),

nd using a CNN-based face detector and the ResNet face recog-

ition network to minimize the number of identity switches

 Mar ̌ceti ́c & Ribari ́c, 2018 ). 

The main aim of the experiments was to demonstrate the effec-

ive adaptation of MADS to the architecture of a multi-face tracking

ystem . 
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. Adaptation of MADS to other classes of problems 

In this section, two short examples are given as an illustration

f the adaptation of the generic MADS architecture to different

lasses of problems (stock trading and automatic image annota-

ion). 

An adaptation of MADS architecture to a decision-making sys-

em for a stock market is described as follows. Many researchers

ave concluded that the dynamics of networked market systems

re better understood as complex adaptive systems, in which inde-

endent software components interact without centralized control

r oversight ( Paulin, Calinescu, & Wooldridge, 2018 ). A process of

uying and selling financial assets is guided by complex and ef-

cient algorithms. The MADS architecture should consist of two

ypes of EBDI agents: (i) investor agents and (ii) broker agents.

hese agents act in an environment which is a real-time trading

latform. Inside the environment, agents should have intentions

oward objects, i.e. financial assets. A reasoning process is based

n relations between both types of agents and objects and should

ave a temporal constraint. The investor agents are assigned to real

nvestors. These agents model investor’s beliefs and desires with

ata such as financial targets, a defined risk level and investment

orizons. The investor agents are extended with a stock market

nalysis function which enables the creation of the agents’ inten-

ion e.g., to buy or sell stocks. Using these types of agent, some

ypical investors’ mistakes which can happen due to irrational de-

isions in crisis situations (e.g., panic selling) or during a reasoning

rocess under the influence of emotions (mostly fear and greed)

re avoided. An intention of broker agents is to execute intentions

efined by investing agents. The broker agents should have real

ime access to trade platforms to perform their intentions. 

In another example, in order to design a MADS-based system

or automatic image annotation as a two-tier annotation model

 Ivasic-Kos, Pobar, & Ribaric, 2016 ), a hierarchical structure of ex-

ended BDI (EBDI) agents should be introduced: at the first level

here are EBDI agents which are specialized in image annotation

t the object level, and EBDI agents at the second level which

se inference-based algorithms to handle the recognition of scenes

nd higher-level concepts. Both sets of EDBI agents should be sup-

orted by knowledge representation schemes with specific knowl-

dge about low-level image features and higher-level concepts, re-

pectively. 

. Conclusion 

The paper has presented a novel multi-agent dynamic system

alled MADS. The MADS model can be easily adapted for a spe-

ific problem domain. In this paper, MADS is adapted to robust

ulti-face tracking in video sequences. The proposed MADS archi-

ecture, based on an extended BDI-based agent paradigm, is rep-

esented as a two-level hierarchical organization. At the first level,

here is a manager agent designed as an Extended Belief Desire In-

ention (mEBDI) agent. The mEBDI agent is a hybrid agent consist-

ng of a BDI agent extended by a set of autonomy-oriented entities

behaviour agents), by a trajectory memory, and by a deep convo-

utional neural network-based face detection module. At the sec-

nd level, there are a number of tracking agents (trEBDIs) which

onsist of a basic BDI agent extended with an integration module.

he integration module contains a tracker based on position and

cale correlation filters, a visual appearance memory, and a tra-

ectory memory. The mEBDI agent’s main tasks are initialization

nd face detection in a video sequence and the management of a

umber of tracking agents (trEBDI) at the second level. The trEBDI

gents track faces detected by the mEBDI agent. Every trEBDI agent

s responsible for tracking one face initially assigned to it by the

EBDI agent. During the multi-face tracking process, the proposed
ulti-agent system can operate in the following states: initializa-

ion, regular tracking, and exception. The mEBDI agent’s and the

rEBDI agent’s activities in all three states have been described in

etail. The mEBDI agent and trEBDI agents interact through coop-

ration and communication, i.e. they exchange messages with in-

ormation about faces that are necessary to maintain the dynamics

n MADS. Note that the trEBDI agents are wholly autonomous dur-

ng the state of regular tracking. The activities of the agents and

heir interaction are explained with suitable rules and are written

n formulas in modal logic. 

The proposed robust multi-face tracking system based on MADS

rchitecture was tested on a subset of YouTube music videos.

he qualitative results of the proposed multi-face tracking system,

s well as the preliminary quantitative results expressed by the

esting metrics MOTA, MOTP and IDS, demonstrate the effective

daptation of MADS to the architecture of a multi-face tracking

ystem. 

Future research work will be directed to include: 

i) The integration of deep learning concepts, conventional ap-

proaches and knowledge from the problem domain (e.g., in-

telligent multisensory, distributed surveillance, crowd analysis)

based on an extension of BDI agents in MADS by management

abilities supported by a knowledge representation scheme and

common-sense reasoning; 

ii) The development of an efficient interface between agents with

mental attitudes and autonomy-oriented entities (AOEs) in

MADS which are oriented to the solution of highly parallel local

oriented tasks; 

ii) The adaptation of MADS to classes of problems such as auto-

matic image annotation, internet search, stock trading, mod-

elling real-life dynamic situations, etc. 

In the near future our research effort s will be directed towards:

v) The integration of a robust multi-face tracking system into a

face de-identification pipeline and to the adaptation of the

MADS model to a third de-identification pipeline stage (i.e., face

masking by applying different privacy filters); 

v) The adaptation of MADS for crowd analysis at a hybrid level

(e.g., the combination of a microscopic and macroscopic ap-

proach). 
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